Flots d'Anosov sur les 3-variétés fibrées en cercles

Abstract We consider Anosov flows on closed 3-manifolds which are circle bundles. Our main result is that, up to a finite covering, these flows are topologically equivalent to the geodesic flow of a suface of constant negative curvature. The same method shows that, if M is a closed hyperbolic manifold of any dimension, all the geodesic flows which correspond to different metrics on M and which are of Anosov type are topologically equivalent.