Nano tools for macro problems: multiscale molecular modeling of nanostructured polymer systems

A current challenge of physical, chemical, and engineering sciences is to develop theoretical tools for predicting structure and properties of complex materials from the knowledge of a few input parameters. In this work, we present a general multiscale molecular simulation protocol for predicting morphologies and properties of nanostructured polymer systems and we apply it to three examples of industrial relevance. The first example is of general importance for the polymer industry and is related to the enhancement of mechanical and barrier properties, if a nanofiller is dispersed into a polymer matrix: the role of multiscale modeling for the development of the material in the stage of screening, the best design is evidenced. The second example, important for the optoelectronic industry, is related to the prediction of the dispersion of gold nanoparticles into a diblock copolymer system forming different nanostructures (lamellae, cylinders, …). In this case, it is relevant to understand how it is possible to influence the self-assembly of the nanoparticles in different regions of the diblock copolymer structure. The third example is of interest to automotive and polymer industries and involves inorganic nanoparticles grafted with organic side chains. The assembly is dispersed in a polymeric matrix and it is interesting to predict the effect of the chain length and grafting density on the nanostructure.

[1]  R. Ross,et al.  Overview of Multiscale Simulation Methods for Materials , 2007 .

[2]  Sanat Mohanty,et al.  Multiscale Simulation Methods for Nanomaterials , 2007 .

[3]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[4]  D. Tomalia,et al.  Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. , 2001, Drug discovery today.

[5]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[6]  Masao Doi Material modeling platform , 2002 .

[7]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[8]  A. Gast,et al.  Dynamic simulation of freely draining flexible polymers in steady linear flows , 1997, Journal of Fluid Mechanics.

[9]  Natasha Maurits,et al.  The MesoDyn project: software for mesoscale chemical engineering , 1999 .

[10]  Florian Müller-Plathe,et al.  Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[12]  Maurizio Fermeglia,et al.  Many-scale molecular simulation for ABS-MMT nanocomposites : Upgrading of industrial scraps , 2008 .

[13]  J. Z. Zhu,et al.  The finite element method , 1977 .

[14]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[15]  Florian Müller-Plathe,et al.  Mapping atomistic simulations to mesoscopic models: a systematic coarse-graining procedure for vinyl polymer chains. , 2005, The journal of physical chemistry. B.

[16]  Tony W. Liu Flexible polymer chain dynamics and rheological properties in steady flows , 1989 .

[17]  D. R. Paul,et al.  Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: a model system for ABS nanocomposites , 2005 .

[18]  A. A. Gusev,et al.  Rational Design of Nanocomposites for Barrier Applications , 2001 .

[19]  Paul Grassia,et al.  Computer simulations of polymer chain relaxation via Brownian motion , 1996, Journal of Fluid Mechanics.

[20]  M. Doi,et al.  Dynamic Density Functional Study on the Structure of Thin Polymer Blend Films with a Free Surface , 2001 .

[21]  Kaxiras,et al.  Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves. , 1996, Physical review letters.

[22]  B. Tidor Molecular dynamics simulations , 1997, Current Biology.

[23]  Maurizio Fermeglia,et al.  To the nanoscale, and beyond!: Multiscale molecular modeling of polymer-clay nanocomposites , 2007 .

[24]  F. Müller-Plathe,et al.  Interphase Structure in Silica–Polystyrene Nanocomposites: A Coarse-Grained Molecular Dynamics Study , 2012 .

[25]  Maurizio Fermeglia,et al.  Modeling hierarchically structured nanoparticle/diblock copolymer systems , 2013 .

[26]  A. A. Gusev,et al.  Finite element mapping for spring network representations of the mechanics of solids. , 2004, Physical review letters.

[27]  Maurizio Fermeglia,et al.  A molecular simulation approach to the prediction of the morphology of self-assembled nanoparticles in diblock copolymers , 2010 .

[28]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[29]  Maurizio Fermeglia,et al.  Multiscale Computer Simulation Studies of Water-Based Montmorillonite/Poly(ethylene oxide) Nanocomposites , 2009 .

[30]  N. Maurits,et al.  The dynamic mean-field density functional method and its application to the mesoscopic dynamics of quenched block copolymer melts , 1997 .

[31]  Y. Lam,et al.  11. Integration of Modelling at Various Length and Time Scales , 2004 .

[32]  J. Fraaije,et al.  Dynamic density functional theory for microphase separation kinetics of block copolymer melts , 1993 .

[33]  M. Fermeglia,et al.  A complete multiscale modelling approach for polymer-clay nanocomposites. , 2009, Chemistry.

[34]  William A. Goddard,et al.  Strategies for multiscale modeling and simulation of organic materials: polymers and biopolymers , 2001 .

[35]  Vincenzo Barone,et al.  Periodic and high-temperature disordered conformations of polytetrafluoroethylene chains: an ab initio modeling. , 2006, Journal of the American Chemical Society.

[36]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[37]  M. Fermeglia,et al.  Scripting approach in hybrid organic–inorganic condensation simulation: the GPTMS proof-of-concept , 2008 .

[38]  Markus J. Buehler,et al.  Current issues in research on structure–property relationships in polymer nanocomposites , 2010 .

[39]  James B. Adams,et al.  Interatomic Potentials from First-Principles Calculations: The Force-Matching Method , 1993, cond-mat/9306054.

[40]  D. Tildesley,et al.  On the role of hydrodynamic interactions in block copolymer microphase separation , 1999 .

[41]  Long Chen FINITE ELEMENT METHOD , 2013 .

[42]  Maurizio Fermeglia,et al.  Multiscale modeling for polymer systems of industrial interest , 2007 .

[43]  Jean-Claude Charpentier,et al.  The triplet "molecular processes-product-process" engineering: the future of chemical engineering ? , 2002 .

[44]  Andrei A. Gusev,et al.  Numerical Identification of the Potential of Whisker- and Platelet-Filled Polymers , 2001 .

[45]  R. Duncan,et al.  Dendrimer biocompatibility and toxicity. , 2005, Advanced drug delivery reviews.

[46]  Maurizio Fermeglia,et al.  Polymer-clay nanocomposites: a multiscale molecular modeling approach. , 2007, The journal of physical chemistry. B.

[47]  Maurizio Fermeglia,et al.  Size and shape matter! a multiscale molecular simulation approach to polymer nanocomposites , 2012 .

[48]  M. Doi,et al.  Dynamic Density Functional Approach to Phase Separation Dynamics of Polymer Systems , 1999 .