Local linear model tree and Neuro-Fuzzy system for modelling and control of an experimental pH neutralization process

This paper describes the modelling and control of a pH neutralization process using a Local Linear Model Tree (LOLIMOT) and an adaptive neuro-fuzzy inference system (ANFIS). The Direct and Inverse model building using LOLIMOT and ANFIS structures is described and compared. The direct and inverse models of the pH system are identified based on experimental data for the LOLIMOT and ANFIS structures. The identified models are implemented in the experimental pH system with IMC structure using a GUI developed in the MATLAB -SIMULINK platform. The main aim is to illustrate the online modelling and control of the experimental setup. The results of real-time control of an experimental pH process using the Internal Model Control (IMC) strategy are also presented.

[1]  Guang-Yi Cao,et al.  Nonlinear modeling of a SOFC stack based on ANFIS identification , 2008, Simul. Model. Pract. Theory.

[2]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[3]  K. Valarmathi,et al.  Intelligent techniques for system identification and controller tuning in pH process , 2009 .

[4]  Fernando Morgado Dias,et al.  Artificial neural networks and neuro-fuzzy systems for modelling and controlling real systems: a comparative study , 2004, Eng. Appl. Artif. Intell..

[5]  Carlos E. Garcia,et al.  Internal model control. 2. Design procedure for multivariable systems , 1985 .

[6]  H. Werner,et al.  Modeling and Control of an Experimental pH Neutralization Plant using Neural Networks based Approximate Predictive Control , 2010 .

[7]  J.L. Rodriguez,et al.  Modeling and identification of pH processes , 2004, Proceedings of the 2004 American Control Conference.

[8]  Fernando Tadeo,et al.  Model-free learning control of neutralization processes using reinforcement learning , 2007, Eng. Appl. Artif. Intell..

[9]  Evanghelos Zafiriou,et al.  Robust process control , 1987 .

[10]  J. Richalet,et al.  Industrial applications of model based predictive control , 1993, Autom..

[11]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[12]  P. B. Deshpande,et al.  Computer Process Control With Advanced Control Applications , 1988 .

[13]  Bing Han,et al.  Process control of pH neutralization based on adaptive algorithm of universal learning network , 2006 .

[14]  G. L. Bodhe Design of Adaptive pH Controller Using ANFIS , 2011 .

[15]  Rolf Isermann,et al.  Adaptive predictive control of a heat exchanger based on a fuzzy model , 1998 .

[16]  T. K. Radhakrishnan,et al.  Real-coded genetic algorithm for system identification and controller tuning , 2009 .

[17]  Rolf Isermann,et al.  NONLINEAR INTERNAL MODEL CONTROL FOR MISO SYSTEMS BASED ON LOCAL LINEAR NEURO-FUZZY MODELS , 2002 .

[18]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[19]  Robert Babuska,et al.  Neuro-fuzzy methods for nonlinear system identification , 2003, Annu. Rev. Control..

[20]  S. Vijayarani,et al.  Association Rule Hiding using Artificial Bee Colony Algorithm , 2011 .

[21]  Dale E. Seborg,et al.  Nonlinear internal model control strategy for neural network models , 1992 .

[22]  Ayyoub Rezaeeian,et al.  ANFIS modeling and feed forward control of shape memory alloy actuators , 2008 .

[23]  Rolf Isermann,et al.  Nonlinear system identification with local linear neuro-fuzzy models , 2005 .

[24]  Caro Lucas,et al.  Reconfigurable Parallel Hardware for Computing Local Linear Neuro-Fuzzy Model , 2006, International Symposium on Parallel Computing in Electrical Engineering (PARELEC'06).

[25]  Oliver Nelles,et al.  Nonlinear system identification with local linear neuro-fuzzy models , 1999 .

[26]  C. A. Kent,et al.  A genetic algorithm based approach to intelligent modelling and control of pH in reactors , 2004, Comput. Chem. Eng..

[27]  Rolf Isermann,et al.  Fast neural networks for diesel engine control design , 1999 .

[28]  Caro Lucas,et al.  Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware , 2008 .