Generation, measurement, and modeling of strong magnetic fields generated by laser-driven micro coils

[1]  B. G. Logan,et al.  Increased Ion Temperature and Neutron Yield Observed in Magnetized Indirectly Driven D_{2}-Filled Capsule Implosions on the National Ignition Facility. , 2022, Physical review letters.

[2]  H. Nagatomo,et al.  Dependence of resistivity gradient guiding of laser-driven relativistic electron beams on laser intensity and duration , 2022, Physics of Plasmas.

[3]  T. Morita,et al.  Detection of current-sheet and bipolar ion flows in a self-generated antiparallel magnetic field of laser-produced plasmas for magnetic reconnection research. , 2022, Physical review. E.

[4]  J. Santos,et al.  Neural network analysis of quasistationary magnetic fields in microcoils driven by short laser pulses , 2022, Scientific Reports.

[5]  R. Spielman,et al.  An assessment of generating quasi-static magnetic fields using laser-driven “capacitor” coils , 2022, Physics of Plasmas.

[6]  H. Zhang,et al.  Self-generated magnetic field in ablative Rayleigh–Taylor instability , 2022, Physics of Plasmas.

[7]  I. Cohen,et al.  Spiral phase plasma mirror , 2022, Journal of Optics.

[8]  S. Fujioka,et al.  Experimental Investigation of Voltage Generation Mechanism of Laser-Driven Coil , 2022, Journal of the Physical Society of Japan.

[9]  B. G. Logan,et al.  The Magnetized Indirect Drive Project on the National Ignition Facility , 2022, Journal of Fusion Energy.

[10]  A. Arefiev,et al.  Progress in relativistic laser–plasma interaction with kilotesla-level applied magnetic fields , 2022, Physics of Plasmas.

[11]  A. Sefkow,et al.  Effect of laser preheat in magnetized liner inertial fusion at OMEGA , 2022, Physics of Plasmas.

[12]  Chen Wang,et al.  Observation of Zeeman splitting effect in a laser-driven coil , 2022, Matter and Radiation at Extremes.

[13]  Y. Gu,et al.  100-kT magnetic field generation using paisley targets by femtosecond laser–plasma interactions , 2022, Applied Physics Letters.

[14]  M. Kruse,et al.  Design of inertial fusion implosions reaching the burning plasma regime , 2022, Nature Physics.

[15]  P. Michel,et al.  Burning plasma achieved in inertial fusion , 2022, Nature.

[16]  D. Schaeffer,et al.  Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems. , 2021, Applied optics.

[17]  C. Niemann,et al.  High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions , 2021, High Power Laser Science and Engineering.

[18]  J. Chittenden,et al.  Measuring magnetic flux suppression in high-power laser–plasma interactions , 2021, Physics of Plasmas.

[19]  M. Roth,et al.  Kilotesla plasmoid formation by a trapped relativistic laser beam. , 2019, Physical review. E.

[20]  R. Fedosejevs,et al.  Kilo-Tesla axial magnetic field generation with high intensity spin and orbital angular momentum beams , 2021, 2111.13243.

[21]  Chen Wang,et al.  Full treatment of the proton radiography technique for laser-driven capacitor-coil targets , 2021, Plasma Physics and Controlled Fusion.

[22]  M. Glinsky,et al.  An overview of magneto-inertial fusion on the Z machine at Sandia National Laboratories , 2021, Nuclear Fusion.

[23]  M. Murakami,et al.  Magnetic field amplification driven by the gyro motion of charged particles , 2021, Scientific Reports.

[24]  Hui Li,et al.  Parameter space for magnetization effects in high-energy-density plasmas , 2021, Matter and Radiation at Extremes.

[25]  Jian Wu,et al.  Measurement of magnetic field distribution produced by high-current pulse using Zeeman splitting of Na emission distributed by laser ablation. , 2021, The Review of scientific instruments.

[26]  N. Woolsey,et al.  Proton radiography in background magnetic fields , 2021, Matter and Radiation at Extremes.

[27]  L. Beesley,et al.  Reconstructing magnetic deflections from sets of proton images using differential evolution. , 2021, The Review of scientific instruments.

[28]  Yutong Li,et al.  Reconnection rate and multi-scale relativistic magnetic reconnection driven by ultra-intense lasers , 2021 .

[29]  H. Ji,et al.  Pulse width dependence of magnetic field generation using laser-powered capacitor coils , 2021 .

[30]  J. Moody Boosting Inertial-Confinement-Fusion Yield with Magnetized Fuel , 2021 .

[31]  S. Glenzer,et al.  Magnetic Field Amplification by a Nonlinear Electron Streaming Instability. , 2021, Physical review letters.

[32]  Xiao-fang Wang,et al.  Separating the contributions of electric and magnetic fields in deflecting the probes in proton radiography with multiple proton energies , 2021 .

[33]  J. Moody,et al.  Dynamics of laser-generated magnetic fields using long laser pulses. , 2021, Physical review. E.

[34]  R. Teyssier,et al.  Cosmological magnetogenesis: the Biermann battery during the Epoch of reionization , 2021, Monthly Notices of the Royal Astronomical Society.

[35]  S. V. Bulanov,et al.  Generation of megatesla magnetic fields by intense-laser-driven microtube implosions , 2020, Scientific Reports.

[36]  N. Woolsey,et al.  Improved fast electron transport through the use of foam guides , 2020, Physics of Plasmas.

[37]  T. Ozaki,et al.  Relativistic magnetic reconnection in laser laboratory for testing an emission mechanism of hard-state black hole system. , 2020, Physical review. E.

[38]  Xiaobin Tang,et al.  Enhanced relativistic electron beams intensity with self-generated resistive magnetic field , 2020 .

[39]  H. L. Hanshaw,et al.  Review of pulsed power-driven high energy density physics research on Z at Sandia , 2020, Physics of Plasmas.

[40]  M. Bonino,et al.  Axial proton probing of magnetic and electric fields inside laser-driven coils , 2020 .

[41]  M. Koenig,et al.  Laboratory Study of Bilateral Supernova Remnants and Continuous MHD Shocks , 2020, The Astrophysical Journal.

[42]  K. Li,et al.  Laser propagation in a highly magnetized over-dense plasma , 2020, 2006.14174.

[43]  E. Parker,et al.  MAGNETIC RECONNECTION , 2020, Plasma Physics for Astrophysics.

[44]  V. Tikhonchuk,et al.  Gain of electron orbital angular momentum in a direct laser acceleration process. , 2020, Physical review. E.

[45]  J. Moody,et al.  Proton deflectometry of a capacitor coil target along two axes , 2020, High Power Laser Science and Engineering.

[46]  J. Moody,et al.  Laser intensity scaling of the magnetic field from a laser-driven coil target , 2020 .

[47]  J. Giuliani,et al.  Local measurements of the spatial magnetic field distribution in a z-pinch plasma during and near stagnation using polarization spectroscopy , 2020 .

[48]  P. Hu,et al.  Pulsed magnetic field device for laser plasma experiments at Shenguang-II laser facility. , 2020, The Review of scientific instruments.

[49]  A. Sunahara,et al.  Petapascal Pressure Driven by Fast Isochoric Heating with a Multipicosecond Intense Laser Pulse. , 2019, Physical review letters.

[50]  Hongjie Liu,et al.  Ab initio simulations for expanded gold fluid in metal-nonmetal transition regime , 2019 .

[51]  A. Sunahara,et al.  Electromagnetic field growth triggering super-ponderomotive electron acceleration during multi-picosecond laser-plasma interaction , 2019, Communications Physics.

[52]  E. Tubman,et al.  Field reconstruction from proton radiography of intense laser driven magnetic reconnection , 2019, Physics of Plasmas.

[53]  Wei Zhou,et al.  High-directional laser-plasma-induced X-ray source assisted by collimated electron beams in targets with a self-generated magnetic field , 2019, Fusion Engineering and Design.

[54]  A. Brantov,et al.  Magnetic field generation from a coil-shaped foil by a laser-triggered hot-electron current , 2019, Laser Physics Letters.

[55]  R. Spielman,et al.  Design of 30-T pulsed magnetic field generator for magnetized high-energy-density plasma experiments , 2018, Physical Review Accelerators and Beams.

[56]  L. Juha,et al.  Magnetized plasma implosion in a snail target driven by a moderate-intensity laser pulse , 2018, Scientific Reports.

[57]  V. Tikhonchuk,et al.  Plasma solenoid driven by a laser beam carrying an orbital angular momentum , 2018, Physical Review E.

[58]  Z. Sheng,et al.  Ion beam bunching via phase rotation in cascading laser-driven ion acceleration , 2018, Physics of Plasmas.

[59]  S. Takeyama,et al.  Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. , 2018, The Review of scientific instruments.

[60]  Yutong Li,et al.  Ultrafast pulsed magnetic fields generated by a femtosecond laser , 2018, Applied Physics Letters.

[61]  Zhe Zhang,et al.  Generation of strong magnetic fields with a laser-driven coil , 2018, High Power Laser Science and Engineering.

[62]  G. Russo,et al.  On the design of a robust kiloTesla spiral magnet , 2018, Journal of Instrumentation.

[63]  M. Higuchi,et al.  Nonperturbative description of the butterfly diagram of energy spectra for materials immersed in a magnetic field , 2018 .

[64]  N. Woolsey,et al.  Enhancing relativistic electron beam propagation through the use of graded resistivity guides , 2018 .

[65]  K. Mima,et al.  Plasma density limits for hole boring by intense laser pulses , 2018, Nature Communications.

[66]  G. Korn,et al.  Numerical simulations to model laser-driven coil-capacitor targets for generation of kilo-Tesla magnetic fields , 2018 .

[67]  Takuya Furuta,et al.  Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02 , 2018 .

[68]  A. Sunahara,et al.  Magnetized fast isochoric laser heating for efficient creation of ultra-high-energy-density states , 2017, Nature Communications.

[69]  R. Kingham,et al.  Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions. , 2017, Physical review. E.

[70]  T. Fülöp,et al.  Relativistic magnetic reconnection driven by a laser interacting with a micro-scale plasma slab , 2017, Nature Communications.

[71]  A. Bhattacharjee,et al.  Relativistic-electron-driven magnetic reconnection in the laboratory , 2016, Physical Review E.

[72]  N. Woolsey,et al.  Guiding of relativistic electron beams in dense matter by laser-driven magnetostatic fields , 2018, Nature Communications.

[73]  A. Bhattacharjee,et al.  High-Mach number, laser-driven magnetized collisionless shocks , 2017 .

[74]  J. Greenly,et al.  Applied axial magnetic field effects on laboratory plasma jets: Density hollowing, field compression, and azimuthal rotation , 2017 .

[75]  N. Woolsey,et al.  Laser-driven strong magnetostatic fields with applications to charged beam transport and magnetized high energy-density physics , 2017, 1712.07175.

[76]  M. Murakami,et al.  Broadening of cyclotron resonance conditions in the relativistic interaction of an intense laser with overdense plasmas. , 2017, Physical review. E.

[77]  B. Holzer CAS - CERN Accelerator School: Plasma Wake Acceleration , 2017, 1708.01118.

[78]  V. Tikhonchuk,et al.  Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly. , 2017, Physical review. E.

[79]  B. G. Logan,et al.  The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion , 2017 .

[80]  D. Sinars,et al.  Laser-driven magnetized liner inertial fusion , 2017 .

[81]  T. Morita,et al.  Magnetohydrodynamics of laser-produced high-energy-density plasma in a strong external magnetic field. , 2017, Physical review. E.

[82]  S. Glenzer,et al.  Relativistic Electron Streaming Instabilities Modulate Proton Beams Accelerated in Laser-Plasma Interactions. , 2017, Physical review letters.

[83]  D. Turnbull,et al.  Ultrafast probing of magnetic field growth inside a laser-driven solenoid. , 2017, Physical review. E.

[84]  F. Pegoraro,et al.  Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields. , 2016, Physical review. E.

[85]  Nicholas F. Y. Chen,et al.  Quantitative shadowgraphy and proton radiography for large intensity modulations. , 2016, Physical Review E.

[86]  F. Wan,et al.  Guiding and collimating the fast electrons by using a low-density-core target with buried high density layers , 2017 .

[87]  Z. Sheng,et al.  Laser propagation in dense magnetized plasma. , 2016, Physical review. E.

[88]  D. Hammer,et al.  Measuring 10-20 T magnetic fields in single wire explosions using Zeeman splitting. , 2016, The Review of scientific instruments.

[89]  H. Ji,et al.  A simple model for estimating a magnetic field in laser-driven coils , 2016 .

[90]  A. Sunahara,et al.  Fast Heating of Imploded Core with Counterbeam Configuration. , 2016, Physical review letters.

[91]  A. Arefiev,et al.  Enhanced proton acceleration in an applied longitudinal magnetic field , 2016, 1607.01868.

[92]  A. Sunahara,et al.  Integrated simulation of magnetic-field-assist fast ignition laser fusion , 2016, 1606.09410.

[93]  H. Ji,et al.  Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current , 2016 .

[94]  A. Seryi,et al.  GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma , 2016, Scientific Reports.

[95]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[96]  G. Morlino,et al.  The microphysics of collisionless shock waves , 2016, Reports on progress in physics. Physical Society.

[97]  S. Fujioka,et al.  Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry , 2016 .

[98]  A. Seryi,et al.  Plasma rotation with circularly polarized laser pulse , 2016 .

[99]  M. Roth,et al.  Ion Acceleration - Target Normal Sheath Acceleration , 2016, 1705.10569.

[100]  V. Tikhonchuk,et al.  Magnetization of laser-produced plasma in a chiral hollow target , 2016, 1602.02626.

[101]  D. Hammer,et al.  Measuring 20-100 T B-fields using Zeeman splitting of sodium emission lines on a 500 kA pulsed power machine. , 2015, The Review of scientific instruments.

[102]  G. Ravindra Kumar,et al.  Megagauss magnetic fields in ultra-intense laser generated dense plasmas , 2016 .

[103]  P. B. Radha,et al.  Direct-drive inertial confinement fusion: A review , 2015 .

[104]  M. Desjarlais,et al.  Effects of magnetization on fusion product trapping and secondary neutron spectraa) , 2015 .

[105]  N. Woolsey,et al.  Laser-driven platform for generation and characterization of strong quasi-static magnetic fields , 2015, 1503.00247.

[106]  R. Town,et al.  A laboratory study of asymmetric magnetic reconnection in strongly driven plasmas , 2015, Nature Communications.

[107]  V. Tikhonchuk,et al.  Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  R. P. Drake,et al.  Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows , 2013, Nature Physics.

[109]  P. Chang,et al.  Note: Experimental platform for magnetized high-energy-density plasma studies at the omega laser facility. , 2015, The Review of scientific instruments.

[110]  S. A. Pikuz,et al.  Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field , 2014, Science.

[111]  M. A. Gigosos,et al.  Stark broadening models for plasma diagnostics , 2014 .

[112]  D. Bliss,et al.  Magnetic field measurements via visible spectroscopy on the Z machine. , 2014, The Review of scientific instruments.

[113]  S. Slutz,et al.  Design of magnetized liner inertial fusion experiments using the Z facilitya) , 2014 .

[114]  A. Sefkow,et al.  Improved spectral data unfolding for radiochromic film imaging spectroscopy of laser-accelerated proton beams. , 2014, The Review of scientific instruments.

[115]  Zhi‐zhan Xu,et al.  Light fan driven by a relativistic laser pulse. , 2014, Physical review letters.

[116]  B. G. Logan,et al.  Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields , 2013 .

[117]  Xiantu He,et al.  Effects of the imposed magnetic field on the production and transport of relativistic electron beams , 2013 .

[118]  D. Batani,et al.  Advances in target normal sheath acceleration theory , 2013 .

[119]  H. Pépin,et al.  Production of large volume, strongly magnetized laser-produced plasmas by use of pulsed external magnetic fields. , 2013, The Review of scientific instruments.

[120]  A. Persson,et al.  MegaGauss magnetic field generation by ultra-short pulses at relativistic intensities , 2013 .

[121]  Hiroshi Azechi,et al.  Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser , 2013, Scientific Reports.

[122]  O Willi,et al.  Dynamics of self-generated, large amplitude magnetic fields following high-intensity laser matter interaction. , 2012, Physical review letters.

[123]  T. Morita,et al.  Strong compression of a magnetic field with a laser-accelerated foil. , 2012, Physical Review Letters.

[124]  N. Koratkar,et al.  Macroscopic transport of mega-ampere electron currents in aligned carbon-nanotube arrays. , 2012, Physical review letters.

[125]  Z. Sheng,et al.  Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas , 2012, Proceedings of the National Academy of Sciences.

[126]  D. T. Michel,et al.  Saturation of the two-plasmon decay instability in long-scale-length plasmas relevant to direct-drive inertial confinement fusion. , 2012, Physical review letters.

[127]  Kai Germaschewski,et al.  Magnetic reconnection in high-energy-density laser-produced plasmasa) , 2012 .

[128]  D. Ryutov,et al.  Invited article: Relation between electric and magnetic field structures and their proton-beam images. , 2012, The Review of scientific instruments.

[129]  K. Germaschewski,et al.  Fast magnetic reconnection in laser-produced plasma bubbles. , 2011, Physical review letters.

[130]  P. Norreys,et al.  Laser-driven fast electron collimation in targets with resistivity boundary. , 2010, Physical review letters.

[131]  W. Rozmus,et al.  Axial magnetic field generation by intense circularly polarized laser pulses in underdense plasmas , 2010 .

[132]  J. T. Mendonça,et al.  Inverse Faraday effect with linearly polarized laser pulses. , 2010, Physical review letters.

[133]  V. Ivanov,et al.  Penetration of a laser-produced plasma across an applied magnetic field , 2010 .

[134]  Zulfikar Najmudin,et al.  Proton deflectometry of a magnetic reconnection geometry , 2010 .

[135]  S. Slutz,et al.  Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field , 2010 .

[136]  J. R. Rygg,et al.  Compressing magnetic fields with high-energy lasers , 2009 .

[137]  J. R. Rygg,et al.  Laser-driven magnetic-flux compression in high-energy-density plasmas. , 2009, Physical review letters.

[138]  P. Norreys,et al.  Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. , 2009, Physical review letters.

[139]  M. Lontano,et al.  Theory of light-ion acceleration driven by a strong charge separation. , 2008, Physical review letters.

[140]  R R Freeman,et al.  Effect of laser intensity on fast-electron-beam divergence in solid-density plasmas. , 2007, Physical review letters.

[141]  Mark Sherlock,et al.  Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition , 2007 .

[142]  R R Freeman,et al.  Measurements of energy transport patterns in solid density laser plasma interactions at intensities of 5x10(20) W cm-2. , 2007, Physical review letters.

[143]  J. R. Rygg,et al.  Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas. , 2007, Physical review letters.

[144]  M G Haines,et al.  Magnetic reconnection and plasma dynamics in two-beam laser-solid interactions. , 2006, Physical review letters.

[145]  J. R. Rygg,et al.  Measuring E and B fields in laser-produced plasmas with monoenergetic proton radiography. , 2006, Physical review letters.

[146]  A. Ash Experimental astrophysics with magnetised laser-produced plasma: UV/X-ray spectroscopy, interferometry and pulsed magnetic fields , 2006 .

[147]  M. Murakami,et al.  Self-similar expansion of finite-size non-quasi-neutral plasmas , 2005 .

[148]  R. A. D. Grundy,et al.  Creation of a uniform high magnetic-field strength environment for laser-driven experiments , 2005 .

[149]  R. G. Adams,et al.  Z-Beamlet: a multikilojoule, terawatt-class laser system. , 2005, Applied optics.

[150]  Lifang Dong,et al.  Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening , 2005 .

[151]  Xiantu He,et al.  Magnetic field generation and relativistic electron dynamics in circularly polarized intense laser interaction with dense plasma , 2005 .

[152]  P. Norreys,et al.  Laboratory measurements of 0.7 GG magnetic fields generated during high-intensity laser interactions with dense plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[153]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[154]  B. Liu,et al.  Spectra from a Magnetic Reconnection-heated Corona in Active Galactic Nuclei , 2003, astro-ph/0301142.

[155]  N. Fisch,et al.  Magnetic field generation through angular momentum exchange between circularly polarized radiation and charged particles. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[156]  D. Neely,et al.  Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. , 2001, Physical review letters.

[157]  A. Pukhov,et al.  Three-dimensional simulations of ion acceleration from a foil irradiated by a short-pulse laser. , 2001, Physical review letters.

[158]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[159]  Y. Maron,et al.  Spectroscopic determination of the magnetic-field distribution in an imploding plasma , 1998 .

[160]  A. Bell,et al.  Magnetic field in short-pulse high-intensity laser-solid experiments , 1998 .

[161]  S. V. Lawande,et al.  Self-generated magnetic field and Faraday rotation in a laser-produced plasma , 1998 .

[162]  O Chubar,et al.  A three-dimensional magnetostatics computer code for insertion devices. , 1998, Journal of synchrotron radiation.

[163]  M. Tabak,et al.  MAGNETIC FIELD GENERATION IN HIGH-INTENSITY-LASER-MATTER INTERACTIONS , 1998 .

[164]  Malcolm G. Haines,et al.  SHORT-PULSE HIGH-INTENSITY LASER-GENERATED FAST ELECTRON TRANSPORT INTO THICK SOLID TARGETS , 1997 .

[165]  V. P. N. Nampoori,et al.  Electron density and temperature measurements in a laser produced carbon plasma , 1997 .

[166]  S. Eliezer,et al.  MEASUREMENTS OF INVERSE FARADAY EFFECT AND ABSORPTION OF CIRCULARLY POLARIZED LASER LIGHT IN PLASMAS , 1997 .

[167]  Meyer-ter-Vehn,et al.  Inverse Faraday effect and propagation of circularly polarized intense laser beams in plasmas. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[168]  C. Thompson A Model of gamma-ray bursts , 1994 .

[169]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[170]  J. Stamper Review on spontaneous magnetic fields in laser-produced plasmas: Phenomena and measurements , 1991 .

[171]  R. Kulsrud,et al.  the Origin of Cosmic Magnetic Fields , 1996 .

[172]  F. Felber,et al.  Compression of ultrahigh magnetic fields in a gas-puff Z pinch , 1988 .

[173]  Martin Richardson,et al.  Observations of high‐energy electron distributions in laser plasmas , 1984 .

[174]  J. Stamper,et al.  Observation of magnetic fields in laser-produced plasma using the Zeeman effect. Memorandum report , 1983 .

[175]  Kent Estabrook,et al.  Properties of Resonantly Heated Electron Distributions , 1978 .

[176]  D. Forslund,et al.  Theory of hot-electron spectra at high laser intensity , 1977 .

[177]  G. Blumenthal,et al.  On the origin of cosmic magnetic fields , 1970 .

[178]  Y. Pomeau,et al.  INVERSE FARADAY EFFECT IN A PLASMA. , 1967 .

[179]  L. Biermann,et al.  Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields , 1951 .