A New Construction of Boundary Interpolating Wavelets for Fourth Order Problems

In this article we introduce a new mixed Lagrange–Hermite interpolating wavelet family on the interval, to deal with two types (Dirichlet and Neumann) of boundary conditions. As this construction is a slight modification of the interpolating wavelets on the interval of Donoho, it leads to fast decomposition, error estimates and norm equivalences. This new basis is then used in adaptive wavelet collocation schemes for the solution of one dimensional fourth order problems. Numerical tests conducted on the 1D Euler–Bernoulli beam problem, show the efficiency of the method.

[1]  Pascal Monasse,et al.  Orthonormal wavelet bases adapted for partial differential equations with boundary conditions , 1998 .

[2]  Y. Maday,et al.  ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .

[3]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[4]  Stefano Grivet-Talocia,et al.  WAVELETS ON THE INTERVAL WITH OPTIMAL LOCALIZATION , 2000 .

[5]  S. Mallat A wavelet tour of signal processing , 1998 .

[6]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[7]  Zhengjia He,et al.  A study of the construction and application of a Daubechies wavelet-based beam element , 2003 .

[8]  Victoria Vampa,et al.  Daubechies wavelet beam and plate finite elements , 2009 .

[9]  S. Bertoluzza,et al.  A wavelet collocation approach for the analysis of laminated shells , 2011 .

[10]  Roland Masson,et al.  BIORTHOGONAL SPLINE WAVELETS ON THE INTERVAL FOR THE RESOLUTION OF BOUNDARY PROBLEMS , 1996 .

[11]  Albert Cohen,et al.  Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..

[12]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[13]  G. Chiavassa,et al.  On the Effective Construction of Compactly Supported Wavelets Satisfying Homogenous Boundary Conditions on the Interval. , 1997 .

[14]  W. Dahmen,et al.  Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .

[15]  O. Vasilyev,et al.  A Dynamically Adaptive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain , 1996 .

[16]  Silvia Bertoluzza,et al.  A high order collocation method for the static and vibration analysis of composite plates using a first-order theory , 2009 .

[17]  Roland Masson,et al.  Wavelet preconditioning of the Stokes problem in ψ–ω formulation , 2000, Numerical Algorithms.

[18]  Jacques Periaux,et al.  Wavelet methods in computational fluid dynamics , 1993 .

[19]  Nicholas K.-R. Kevlahan,et al.  An adaptive multilevel wavelet collocation method for elliptic problems , 2005 .

[20]  E. H. Twizell,et al.  A sixth‐order multiderivative method for two beam problems , 1986 .

[21]  S. Bertoluzza,et al.  A Wavelet Collocation Method for the Numerical Solution of Partial Differential Equations , 1996 .

[22]  Silvia Bertoluzza An adaptive collocation method based on interpolating wavelets , 1997 .

[23]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[24]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[25]  Adaptive wavelet collocation for nonlinear BVPs , 1996 .

[26]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[27]  Silvia Bertoluzza,et al.  A wavelet collocation method for the static analysis of sandwich plates using a layerwise theory , 2010 .

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[29]  Silvia Bertoluzza Adaptive wavelet collocation method for the solution of Burgers equation , 1996 .

[30]  Naoki Saito,et al.  Wavelets, their autocorrelation functions, and multiresolution representations of signals , 1992, Other Conferences.