CuO nanowires synthesized by thermal oxidation route

[1]  M. Peach Mechanism of Growth of Whiskers on Cadmium , 1952 .

[2]  L. Tjeng,et al.  Electronic structure of Cu2O and CuO. , 1988, Physical review. B, Condensed matter.

[3]  D. W. Hoffman,et al.  Stress-related effects in thin films , 1989 .

[4]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[5]  Williams,et al.  Spontaneous ordering of oxide nanostructures , 2000, Science.

[6]  Somnath Ghosh,et al.  Deposition of thin films of different oxides of copper by RF reactive sputtering and their characterization , 2000 .

[7]  A. Ogale,et al.  Self-organized pattern formation in the oxidation of supported iron thin films. i. an experimental study , 2001 .

[8]  Younan Xia,et al.  CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air , 2002 .

[9]  Zu Rong Dai,et al.  Solution Phase Synthesis of Cu(OH)2 Nanoribbons by Coordination Self-Assembly Using Cu2S Nanowires as Precursors , 2002 .

[10]  Parmanand Sharma,et al.  H2S gas sensing mechanism of SnO2 films with ultrathin CuO dotted islands , 2002 .

[11]  A. Seitsonen,et al.  Oxidation of Metal Surfaces , 2002, Science.

[12]  F. Chen,et al.  Synthesis of Cable‐Like Copper Nanowires , 2003 .

[13]  Chien-Te Hsieh,et al.  Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechanism , 2003 .

[14]  Yoshio Bando,et al.  A Novel Method for Preparing Copper Nanorods and Nanowires , 2003 .

[15]  Zu-liang Liu,et al.  A simple wet-chemical synthesis and characterization of CuO nanorods , 2003 .

[16]  Junqing Hu,et al.  Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets , 2003 .

[17]  C. Hsieh,et al.  Field emission from various CuO nanostructures , 2003 .

[18]  Hiroyuki Yamada,et al.  Fast suppression of antiferromagnetism in Cu 1 − x Li x O , 2004 .

[19]  Hui Zhang,et al.  CuO nanodendrites synthesized by a novel hydrothermal route , 2004 .

[20]  A. Srivastava,et al.  The effect of growth parameters on the aspect ratio and number density of CuO nanorods , 2004 .

[21]  Xu-Guang Zheng,et al.  Lattice distortion and magnetolattice coupling in CuO , 2004 .

[22]  Brian C. Holloway,et al.  Free-standing subnanometer graphite sheets , 2004 .

[23]  Liuying Huang,et al.  Preparation of large-scale cupric oxide nanowires by thermal evaporation method , 2004 .

[24]  S. Shi,et al.  Formation of CuO nanowires on Cu foil , 2004 .

[25]  Yuan Yao,et al.  Well‐Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates , 2004 .

[26]  H. Zeng,et al.  Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons , 2004 .

[27]  Shihe Yang,et al.  Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells , 2005 .

[28]  A. Abad,et al.  Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system , 2005 .

[29]  Dapeng Yu,et al.  Microstructure characterization of Al2O3 nanowires with networked rectangular nanostructure , 2005 .

[30]  S. Blügel,et al.  All-electron first-principles investigations of the energetics of vicinal Cu surfaces , 2006 .

[31]  Meng Tao,et al.  LSDA+U study of cupric oxide : Electronic structure and native point defects , 2006 .

[32]  J. Yakhmi,et al.  Growth and branching of CuO nanowires by thermal oxidation of copper , 2006 .

[33]  Q. Yang,et al.  Synthesis of two-dimensional micron-sized single-crystalline ZnS thin nanosheets and their photoluminescence properties , 2006 .

[34]  S. Bennici,et al.  Catalytic activity of dispersed CuO phases towards nitrogen oxides (N2O, NO, and NO2) , 2006 .

[35]  P. Yan,et al.  Ultrafast growth of single-crystalline Si nanowires , 2006 .

[36]  Y. Qian,et al.  CuO shuttle-like nanocrystals synthesized by oriented attachment , 2006 .