Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia
暂无分享,去创建一个
Sukhan Lee | S. Keihm | G. Filacchione | F. Capaccioni | L. Kamp | S. Gulkis | M. Hofstadter | M. Capria | F. Tosi | D. Grassi | S. Giuppi | M. Janssen
[1] B. Altieri,et al. Thermal and shape properties of asteroid (21) Lutetia from Herschel observations around the Rosetta flyby , 2012 .
[2] Rita Schulz,et al. Rosetta fly-by at asteroid (21) Lutetia: An overview , 2012 .
[3] Paul Hartogh,et al. Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft , 2012 .
[4] D Tiphene,et al. The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.
[5] S. Debei,et al. Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.
[6] Sebastiano Ligori,et al. Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared , 2011, 1108.2616.
[7] S. Green,et al. Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model , 2011, 1211.1844.
[8] Robert O. Green,et al. Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .
[9] M. Kaasalainen,et al. The shape and physical properties of asteroid 21 Lutetia from OSIRIS images , 2010 .
[10] T. Encrenaz,et al. Millimeter and submillimeter measurements of asteroid (2867) Steins during the Rosetta fly-by , 2010 .
[11] S. Erard,et al. The light curve of asteroid 21 Lutetia measured by VIRTIS-M during the Rosetta fly-by , 2010 .
[12] M. Kaasalainen,et al. Thermal properties of asteroid 21 Lutetia from Spitzer Space Telescope observations , 2010 .
[13] R. Roy,et al. Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry , 2010, 1005.5356.
[14] Paolo Tanga,et al. Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.
[15] H. Rickman,et al. Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .
[16] Alan Fitzsimmons,et al. Surface properties of Rosetta's targets (21) Lutetia and (2867) Steins from ESO observations , 2008 .
[17] T. Encrenaz,et al. MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .
[18] A. Harris,et al. Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.
[19] W. Delamere,et al. Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .
[20] U. Fink,et al. Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .
[21] Joseph D. Adams,et al. The size and albedo of Rosetta fly-by target 21 Lutetia from new IRTF measurements and thermal modeling , 2006 .
[22] Clive D Rodgers,et al. Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .
[23] T. G. Muller,et al. Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .
[24] Alan W. Harris,et al. A Thermal Model for Near-Earth Asteroids , 1998 .
[25] J. Lagerros. THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .
[26] J. Lagerros. THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .
[27] J. Lagerros. THERMAL PHYSICS OF ASTEROIDS. I. EFFECTS OF SHAPE, HEAT CONDUCTION AND BEAMING , 1996 .
[28] John W. Fowler,et al. The IRAS Minor Planet Survey , 1992 .
[29] P. Hartogh,et al. A high-resolution chirp transform spectrometer for microwave measurements , 1990 .
[30] J. Spencer. A rough-surface thermophysical model for airless planets , 1990 .
[31] L. Lebofsky,et al. Systematic biases in radiometric diameter determinations , 1989 .
[32] Richard J. Rudy,et al. A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .
[33] Stephen J. Keihm,et al. Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping , 1984 .
[34] R. Clark,et al. Planetary reflectance measurements in the region of planetary thermal emission , 1979 .
[35] S. Keihm,et al. Interpretation of ground-based microwave measurements of the moon using a detailed regolith properties model. , 1978 .
[36] O. Hansen. An explication of the radiometric method for size and albedo determination. [asteroid IR photometry] , 1977 .
[37] R. Baron,et al. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency , 1976 .
[38] Stephen J. Keihm,et al. Lunar Microwave Brightness Temperature Observations Reevaluated in the Light of Apollo Program Findings , 1975 .
[39] D. Morrison,et al. Recalibration of the photometric/radiometric method of determining asteroid sizes , 1974 .
[40] R. W. Shorthill,et al. The sunlit lunar surface , 1972 .
[41] D. F. Winter,et al. Directional characteristics of infrared emission from the moon , 1971 .
[42] D. Buhl,et al. Reradiation and thermal emission from illuminated craters on the lunar surface , 1968 .
[43] Zdeněk Kopal,et al. Physics and Astronomy of the Moon , 1962 .
[44] S. B. Nicholson,et al. Lunar radiation and temperatures , 1930 .