Interpretation of combined infrared, submillimeter, and millimeter thermal flux data obtained during the Rosetta fly-by of Asteroid (21) Lutetia

[1]  B. Altieri,et al.  Thermal and shape properties of asteroid (21) Lutetia from Herschel observations around the Rosetta flyby , 2012 .

[2]  Rita Schulz,et al.  Rosetta fly-by at asteroid (21) Lutetia: An overview , 2012 .

[3]  Paul Hartogh,et al.  Continuum and spectroscopic observations of asteroid (21) Lutetia at millimeter and submillimeter wavelengths with the MIRO instrument on the Rosetta spacecraft , 2012 .

[4]  D Tiphene,et al.  The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS , 2011, Science.

[5]  S. Debei,et al.  Images of Asteroid 21 Lutetia: A Remnant Planetesimal from the Early Solar System , 2011, Science.

[6]  Sebastiano Ligori,et al.  Determination of physical properties of the Asteroid (41) Daphne from interferometric observations in the thermal infrared , 2011, 1108.2616.

[7]  S. Green,et al.  Directional characteristics of thermal–infrared beaming from atmosphereless planetary surfaces – a new thermophysical model , 2011, 1211.1844.

[8]  Robert O. Green,et al.  Thermal removal from near‐infrared imaging spectroscopy data of the Moon , 2011 .

[9]  M. Kaasalainen,et al.  The shape and physical properties of asteroid 21 Lutetia from OSIRIS images , 2010 .

[10]  T. Encrenaz,et al.  Millimeter and submillimeter measurements of asteroid (2867) Steins during the Rosetta fly-by , 2010 .

[11]  S. Erard,et al.  The light curve of asteroid 21 Lutetia measured by VIRTIS-M during the Rosetta fly-by , 2010 .

[12]  M. Kaasalainen,et al.  Thermal properties of asteroid 21 Lutetia from Spitzer Space Telescope observations , 2010 .

[13]  R. Roy,et al.  Physical properties of ESA Rosetta target asteroid (21) Lutetia: Shape and flyby geometry , 2010, 1005.5356.

[14]  Paolo Tanga,et al.  Thermal inertia of main belt asteroids smaller than 100 km from IRAS data , 2008, 0808.0869.

[15]  H. Rickman,et al.  Physical properties of morphological units on Comet 9P/Tempel 1 derived from near-IR Deep Impact spectra , 2009 .

[16]  Alan Fitzsimmons,et al.  Surface properties of Rosetta's targets (21) Lutetia and (2867) Steins from ESO observations , 2008 .

[17]  T. Encrenaz,et al.  MIRO: Microwave Instrument for Rosetta Orbiter , 2007 .

[18]  A. Harris,et al.  Thermal inertia of near-Earth asteroids and implications for the magnitude of the Yarkovsky effect , 2007, 0704.1915.

[19]  W. Delamere,et al.  Surface temperature of the nucleus of Comet 9P/Tempel 1 , 2007 .

[20]  U. Fink,et al.  Virtis: An Imaging Spectrometer for the Rosetta Mission , 2007 .

[21]  Joseph D. Adams,et al.  The size and albedo of Rosetta fly-by target 21 Lutetia from new IRTF measurements and thermal modeling , 2006 .

[22]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[23]  T. G. Muller,et al.  Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .

[24]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[25]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .

[26]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .

[27]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. I. EFFECTS OF SHAPE, HEAT CONDUCTION AND BEAMING , 1996 .

[28]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[29]  P. Hartogh,et al.  A high-resolution chirp transform spectrometer for microwave measurements , 1990 .

[30]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[31]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[32]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[33]  Stephen J. Keihm,et al.  Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping , 1984 .

[34]  R. Clark,et al.  Planetary reflectance measurements in the region of planetary thermal emission , 1979 .

[35]  S. Keihm,et al.  Interpretation of ground-based microwave measurements of the moon using a detailed regolith properties model. , 1978 .

[36]  O. Hansen An explication of the radiometric method for size and albedo determination. [asteroid IR photometry] , 1977 .

[37]  R. Baron,et al.  Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency , 1976 .

[38]  Stephen J. Keihm,et al.  Lunar Microwave Brightness Temperature Observations Reevaluated in the Light of Apollo Program Findings , 1975 .

[39]  D. Morrison,et al.  Recalibration of the photometric/radiometric method of determining asteroid sizes , 1974 .

[40]  R. W. Shorthill,et al.  The sunlit lunar surface , 1972 .

[41]  D. F. Winter,et al.  Directional characteristics of infrared emission from the moon , 1971 .

[42]  D. Buhl,et al.  Reradiation and thermal emission from illuminated craters on the lunar surface , 1968 .

[43]  Zdeněk Kopal,et al.  Physics and Astronomy of the Moon , 1962 .

[44]  S. B. Nicholson,et al.  Lunar radiation and temperatures , 1930 .