Bio-mechanical characterization of Mg-composite implant developed by spark plasma sintering technique

[1]  Deepti Singh,et al.  Biomanufacturing , 2021, 3D Printing in Medicine and Surgery.

[2]  S. Ramakrishna,et al.  Microwave sintering of porous Ti–Nb-HA composite with high strength and enhanced bioactivity for implant applications , 2020, Journal of Alloys and Compounds.

[3]  Sunpreet Singh,et al.  On the characterization of functionally graded biomaterial primed through a novel plaster mold casting process. , 2020, Materials science & engineering. C, Materials for biological applications.

[4]  L. Lamberti,et al.  Processing of Ti50Nb50−xHAx composites by rapid microwave sintering technique for biomedical applications , 2020, Journal of Materials Research and Technology.

[5]  M. Mittal,et al.  Fabrication of low elastic modulus Ti50Nb30HA20 alloy by rapid microwave sintering technique for biomedical applications , 2020 .

[6]  Harish Garg,et al.  Fabrication of aluminium carbon nano tube silicon carbide particles based hybrid nano-composite by spark plasma sintering , 2020 .

[7]  Sunpreet Singh,et al.  Investigation of machining characteristics of hard-to-machine Ti-6Al-4V-ELI alloy for biomedical applications , 2019, Journal of Materials Research and Technology.

[8]  Sunpreet Singh,et al.  Metaheuristic approach in machinability evaluation of silicon carbide particle/glass fiber–reinforced polymer matrix composites during electrochemical discharge machining process , 2019, Measurement and Control.

[9]  G. Littlefair,et al.  Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining , 2019, Materials and Manufacturing Processes.

[10]  A. Pramanik,et al.  Understanding the wire electrical discharge machining of Ti6Al4V alloy , 2019, Heliyon.

[11]  Sunpreet Singh,et al.  Surface Modification of Ti-6Al-4V Alloy by Electrical Discharge Coating Process Using Partially Sintered Ti-Nb Electrode , 2019, Materials.

[12]  H. Singh,et al.  Current Trends in Biomaterials and Bio-manufacturing , 2019, Biomanufacturing.

[13]  Sunpreet Singh,et al.  Multi-objective particle swarm optimization of EDM parameters to deposit HA-coating on biodegradable Mg-alloy , 2018, Vacuum.

[14]  B. S. Pabla,et al.  Bio-inspired low elastic biodegradable Mg-Zn-Mn-Si-HA alloy fabricated by spark plasma sintering , 2018, Materials and Manufacturing Processes.

[15]  Sunpreet Singh,et al.  Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications , 2018, Vacuum.

[16]  B. S. Pabla,et al.  Synthesis, characterization, corrosion and bioactivity investigation of nano-HA coating deposited on biodegradable Mg-Zn-Mn alloy , 2018, Surface and Coatings Technology.

[17]  C. Prakash,et al.  Electrochemical Discharge Drilling of Polymer Matrix Composites , 2018 .

[18]  Sunpreet Singh,et al.  Multi-objective Optimization of MWCNT Mixed Electric Discharge Machining of Al–30SiC p MMC Using Particle Swarm Optimization , 2018 .

[19]  A. Michalcová,et al.  Electrochemical hydriding of nanocrystalline Mg-Ni-X (X = Co, Mn, Nd) alloys prepared by mechanical alloying and spark plasma sintering , 2017 .

[20]  C. Prakash,et al.  Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity , 2017 .

[21]  M. Brochu,et al.  Spark plasma sintering and spark plasma upsetting of an Al-Zn-Mg-Cu alloy , 2017 .

[22]  Sachiko Hiromoto,et al.  In Vitro Corrosion Properties of Mg Matrix In Situ Composites Fabricated by Spark Plasma Sintering , 2017 .

[23]  Peter J. Murphy,et al.  Enhancing the corrosion resistance of biodegradable Mg-based alloy by machining-induced surface integrity: influence of machining parameters on surface roughness and hardness , 2017 .

[24]  Wen-xian Wang,et al.  Effect of particle size on densification of pure magnesium during spark plasma sintering , 2017 .

[25]  B. S. Pabla,et al.  Experimental investigations in powder mixed electric discharge machining of Ti–35Nb–7Ta–5Zrβ-titanium alloy , 2017 .

[26]  K. Biswas,et al.  Effect of doping (Mg,Mn,Zn) on the microstructure and mechanical properties of spark plasma sintered hydroxyapatites synthesized by mechanical alloying , 2017 .

[27]  B. S. Pabla,et al.  Potential of Silicon Powder-Mixed Electro Spark Alloying for Surface Modification of β-Phase Titanium Alloy for Orthopedic Applications , 2017 .

[28]  B. S. Pabla,et al.  On the Influence of Nanoporous Layer Fabricated by PMEDM on β-Ti Implant: Biological and Computational Evaluation of Bone- Implant Interface , 2017 .

[29]  Sanjeev Puri,et al.  Powder Mixed Electric Discharge Machining: An Innovative Surface Modification Technique to Enhance Fatigue Performance and Bioactivity of β-Ti Implant for Orthopedics Application , 2016, J. Comput. Inf. Sci. Eng..

[30]  B. S. Pabla,et al.  Effect of Surface Nano-Porosities Fabricated by Powder Mixed Electric Discharge Machining on Bone-Implant Interface: An Experimental and Finite Element Study , 2016 .

[31]  Chander Prakash,et al.  Multi-objective optimization of powder mixed electric discharge machining parameters for fabrication of biocompatible layer on β-Ti alloy using NSGA-II coupled with Taguchi based response surface methodology , 2016 .

[32]  Tatsuo Sato,et al.  Sintering Behavior and Mechanical Properties of Magnesium/β-Tricalcium Phosphate Composites Sintered by Spark Plasma Sintering , 2016 .

[33]  Yufeng Zheng,et al.  Micro-alloying with Mn in Zn–Mg alloy for future biodegradable metals application , 2016 .

[34]  B. S. Pabla,et al.  Electric discharge machining – A potential choice for surface modification of metallic implants for orthopedic applications: A review , 2016 .

[35]  M. Brochu,et al.  Spark plasma sintering and age hardening of an Al–Zn–Mg alloy powder blend , 2016 .

[36]  B. S. Pabla,et al.  To optimize the surface roughness and microhardness of β-Ti alloy in PMEDM process using Non-dominated Sorting Genetic Algorithm-II , 2015, 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS).

[37]  B. S. Pabla,et al.  Processing and Characterization of Novel Biomimetic Nanoporous Bioceramic Surface on β-Ti Implant by Powder Mixed Electric Discharge Machining , 2015, Journal of Materials Engineering and Performance.

[38]  C Ganapathy,et al.  Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. , 2014, Journal of the mechanical behavior of biomedical materials.

[39]  Minfang Chen,et al.  The effect of nano-hydroxyapatite on the microstructure and properties of Mg–3Zn–0.5Zr alloy , 2014 .

[40]  M. Medraj,et al.  Mechanical and bio-corrosion properties of quaternary Mg–Ca–Mn–Zn alloys compared with binary Mg–Ca alloys , 2014 .

[41]  V. Muthupandi,et al.  Plasma Electrolytic Oxidation and Characterization of Spark Plasma Sintered Magnesium/Hydroxyapatite Composites , 2013 .

[42]  K. Khalil,et al.  Effect of high-frequency induction heat sintering conditions on the microstructure and mechanical properties of nanostructured magnesium/hydroxyapatite nanocomposites , 2012 .

[43]  Satendra Kumar,et al.  Electrodeposition of hydroxyapatite coating on magnesium for biomedical applications , 2012, Journal of Coatings Technology and Research.

[44]  Zhiming Yu,et al.  Biodegradable Behaviors of Mg-6%Zn-5%Hydroxyapatite Biomaterial , 2011 .

[45]  E. Lavernia,et al.  High strength, nano-structured Mg–Al–Zn alloy , 2011 .

[46]  Yufeng Zheng,et al.  Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites , 2010 .

[47]  Jianwei Xu,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application. , 2010, Acta biomaterialia.

[48]  K. Hong,et al.  Microstructure and mechanical properties of Mg-HAP composites , 2010 .

[49]  Meng Yang,et al.  In vitro corrosion resistance and cytocompatibility of nano-hydroxyapatite reinforced Mg–Zn–Zr composites , 2010, Journal of materials science. Materials in medicine.

[50]  Yang Song,et al.  Research on an Mg-Zn alloy as a degradable biomaterial. , 2010, Acta biomaterialia.

[51]  Bin Yang,et al.  Nanostructured Al-Zn-Mg-Cu alloy synthesized by cryomilling and spark plasma sintering , 2009 .

[52]  Ke Yang,et al.  Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application , 2009 .

[53]  Lei Yang,et al.  Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application , 2008 .

[54]  Ke Yang,et al.  Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content , 2008 .

[55]  D. Eliezer,et al.  The role of Mg2Si on the corrosion behavior of wrought Mg–Zn–Mn alloy , 2008 .

[56]  In-Seop Lee,et al.  Calcium phosphate coating on magnesium alloy for modification of degradation behavior , 2008 .

[57]  Yufeng Zheng,et al.  The development of binary Mg-Ca alloys for use as biodegradable materials within bone. , 2008, Biomaterials.

[58]  Ke Yang,et al.  In vitro corrosion behaviour of Mg alloys in a phosphate buffered solution for bone implant application , 2008, Journal of materials science. Materials in medicine.

[59]  Ke Yang,et al.  In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application. , 2007, Journal of biomedical materials research. Part A.

[60]  M. Störmer,et al.  Biodegradable magnesium-hydroxyapatite metal matrix composites. , 2007, Biomaterials.

[61]  D. Eliezer,et al.  The role of Si and Ca on new wrought Mg–Zn–Mn based alloy , 2007 .

[62]  Alexis M Pietak,et al.  Magnesium and its alloys as orthopedic biomaterials: a review. , 2006, Biomaterials.

[63]  C. Walker,et al.  The silicon content of beer and its bioavailability in healthy volunteers , 2004, British Journal of Nutrition.

[64]  C. Liu,et al.  Microstructure and mechanical properties of Mo–Mo3Si–Mo5SiB2 silicides , 1999 .

[65]  M. Mabuchi,et al.  Tensile strength, ductility and fracture of magnesium-silicon alloys , 1996, Journal of Materials Science.