Predissociation spectroscopy of the argon-solvated H5O2+ "zundel" cation in the 1000-1900 cm(-1) region.

Predissociation spectra of the H5O2+.Ar(1,2) cluster ions are reported in the 1000-1900 cm(-1) region. The weakly bound argon atoms enable investigation of the complex in a linear action mode, and the resulting spectra are much simpler than those reported previously in this region [Asmis et al., Science 299, 1375 (2003) and Fridgen et al., J. Phys. Chem. A 108, 9008 (2004)], which were obtained using infrared multiphoton dissociation of the bare complex. The observed spectrum consists of two relatively narrow bands at 1080 and 1770 cm(-1) that are likely due to excitation of the shared proton and intramolecular bending vibrations of the two water molecules, respectively. The narrow linewidths and relatively small (60 cm(-1)) perturbation introduced by the addition of a second argon atom indicate that the basic "zundel" character of the H5O2+ ion survives upon complexation.

[1]  T. D. Fridgen,et al.  Infrared Spectrum of the Protonated Water Dimer in the Gas Phase , 2004 .

[2]  T. Zwier,et al.  Hydrogen atom dislocation in the excited state of anthranilic acid: probing the carbonyl stretch fundamental and the effects of water complexation , 2004 .

[3]  D. Marx,et al.  Modeling protonated water networks in bacteriorhodopsinPresented at the 81st International Bunsen Discussion Meeting on , 2004 .

[4]  S. Leutwyler,et al.  Probing the Threshold to H Atom Transfer Along a Hydrogen-Bonded Ammonia Wire , 2003, Science.

[5]  Joel M. Bowman,et al.  A theoretical study of vibrational mode coupling in H5O2 , 2003 .

[6]  Ludger Wöste,et al.  Gas-Phase Infrared Spectrum of the Protonated Water Dimer , 2003, Science.

[7]  William H. Robertson,et al.  Argon predissociation infrared spectroscopy of the hydroxide–water complex (OH−·H2O) , 2002 .

[8]  A. Gerlach,et al.  Structure of a β-sheet model system in the gas phase: Analysis of the CO stretching vibrations , 2002 .

[9]  V. Buch,et al.  Solvation and Ionization Stages of HCl on Ice Nanocrystals , 2002 .

[10]  Marvin Johnson,et al.  Infrared Characterization of the Icosahedral Shell Closing in Cl-·H2O·Arn(1 ≤n≤ 13) Clusters , 2002 .

[11]  C. Dellago,et al.  Autoionization in Liquid Water , 2001, Science.

[12]  G. Chaban,et al.  Anharmonic Vibrational Spectroscopy of Hydrogen-Bonded Systems Directly Computed from ab Initio Potential Surfaces: (H2O)n, n = 2, 3; Cl-(H2O)n, n = 1, 2; H+(H2O)n, n = 1, 2; H2O−CH3OH , 2000 .

[13]  Marvin Johnson,et al.  Infrared spectroscopic observation of the argon isomer distribution in evaporative ensembles of I−⋅ROH⋅Arm (R=methyl, ethyl, isopropyl) clusters , 1999 .

[14]  Gregory A. Voth,et al.  The computer simulation of proton transport in water , 1999 .

[15]  M. Parrinello,et al.  The nature of the hydrated excess proton in water , 1999, Nature.

[16]  Marvin Johnson,et al.  Mass-selected “matrix isolation” infrared spectroscopy of the I−·(H2O)2 complex: making and breaking the inter-water hydrogen-bond , 1998 .

[17]  Marvin Johnson,et al.  Vibrational Spectroscopy of the Ionic Hydrogen Bond: Fermi Resonances and Ion−Molecule Stretching Frequencies in the Binary X-·H2O (X = Cl, Br, I) Complexes via Argon Predissociation Spectroscopy , 1998 .

[18]  Edward F. Valeev,et al.  The protonated water dimer: Brueckner methods remove the spurious C1 symmetry minimum , 1998 .

[19]  K. Kreuer Fast proton conductivity: A phenomenon between the solid and the liquid state? , 1997 .

[20]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[21]  J. Price,et al.  Vibrational spectroscopy of the hydrated hydronium cluster ions H3O+·(H2O)n (n=1, 2, 3) , 1989 .

[22]  Marvin Johnson,et al.  Demonstration of a pulsed photoelectron spectrometer on mass-selected negative ions: O−, O2−, and O4− , 1986 .

[23]  Yuan-Pern Lee,et al.  Infrared spectra of the cluster ions H7O+3⋅H2 and H9O+4⋅H2 , 1986 .

[24]  P. Kebarle,et al.  Kinetic study of the proton hydrate H+(H2O)n equilibriums in the gas phase , 1972 .

[25]  G. Zundel,et al.  Energiebänder der tunnelnden Überschuß-Protonen in flüssigen Säuren. Eine IR-spektroskopische Untersuchung der Natur der Gruppierungen H5O2+ , 1968 .

[26]  Joachim Sauer,et al.  The infrared spectrum of the O⋯H⋯O fragment of H5O2+: Ab initio classical molecular dynamics and quantum 4D model calculations , 2001 .

[27]  P. Schuster,et al.  The Hydrogen bond : recent developments in theory and experiments , 1976 .