Obnoxious centers in graphs

We consider the problem of finding obnoxious centers in graphs. For arbitrary graphs with <i>n</i> vertices and <i>m</i> edges, we give a randomized algorithm with <i>O</i>(<i>n</i> log<sup>2</sup> <i>n</i> + <i>m</i> log <i>n</i>) expected time. For planar graphs, we give algorithms with <i>O</i>(<i>n</i> log <i>n</i>) expected time and <i>O</i>(<i>n</i> log<sup>3</sup> <i>n</i>) worst-case time. For graphs with bounded treewidth, we give an algorithm taking <i>O</i>(<i>n</i> log <i>n</i>) worst-case time. The algorithms make use of parametric search and several results for computing distances on graphs of bounded treewidth and planar graphs.

[1]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[2]  Richard Cokt Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms , 1984 .

[3]  H. L. Bodlaender,et al.  Treewidth: Algorithmic results and techniques , 1997 .

[4]  Arie Tamir,et al.  Improved Complexity Bounds for Center Location Problems on Networks by Using Dynamic Data Structures , 1988, SIAM J. Discret. Math..

[5]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[6]  Arie Tamir,et al.  Obnoxious Facility Location on Graphs , 1991, SIAM J. Discret. Math..

[7]  R. Garfinkel,et al.  Locating an Obnoxious Facility on a Network , 1978 .

[8]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[9]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[10]  Arie Tamir,et al.  Locating two obnoxious facilities using the weighted maximin criterion , 2006, Oper. Res. Lett..

[11]  Günter Rote,et al.  The Obnoxious Center Problem on a Tree , 2001, SIAM J. Discret. Math..

[12]  Christos D. Zaroliagis,et al.  Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms , 2000, Algorithmica.

[13]  Gary L. Miller,et al.  Finding Small Simple Cycle Separators for 2-Connected Planar Graphs , 1986, J. Comput. Syst. Sci..

[14]  Matthew J. Katz,et al.  Obnoxious facility location: Complete service with minimal harm , 2000, CCCG.

[15]  Michael Segal Placing an Obnoxious Facility in Geometric Networks , 2003, Nord. J. Comput..

[16]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[17]  Nimrod Megiddo,et al.  Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.

[18]  Boaz Ben-Moshe,et al.  Efficient Algorithms for the Weighted 2-Center Problem in a Cactus Graph , 2005, ISAAC.

[19]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[20]  Michael Segal,et al.  Improved algorithms for placing undesirable facilities , 2002, CCCG.

[21]  Satish Rao,et al.  Planar graphs, negative weight edges, shortest paths, and near linear time , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[22]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[23]  Janez Zerovnik,et al.  The obnoxious center problem on weighted cactus graphs , 2001, Discret. Appl. Math..

[24]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[25]  N. Megiddo Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.

[26]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[27]  Torben Hagerup,et al.  Parallel Algorithms with Optimal Speedup for Bounded Treewidth , 1995, ICALP.

[28]  D. ChaudhuriChristos,et al.  Shortest Paths in Digraphs of Small Treewidth . Part II : Optimal Parallel Algorithms , 1995 .