Small Toxic Proteins and the Antisense RNAs That Repress Them

SUMMARY There has been a great expansion in the number of small regulatory RNAs identified in bacteria. Some of these small RNAs repress the synthesis of potentially toxic proteins. Generally the toxin proteins are hydrophobic and less than 60 amino acids in length, and the corresponding antitoxin small RNA genes are antisense to the toxin genes or share long stretches of complementarity with the target mRNAs. Given their short length, only a limited number of these type I toxin-antitoxin loci have been identified, but it is predicted that many remain to be found. Already their characterization has given insights into regulation by small RNAs, has suggested functions for the small toxic proteins at the cell membrane, and has led to practical applications for some of the type I toxin-antitoxin loci.

[1]  F factor promotes turnover of stable RNA in escherichia coli. , 1975, Science.

[2]  Y. Ohnishi,et al.  Genetic mapping of the F plasmid gene that promotes degradation of stable ribonucleic acid in Escherichia coli , 1977, Journal of bacteriology.

[3]  S. Akimoto,et al.  I-like R plasmids promote degradation of stable ribonucleic acid in Escherichia coli , 1980, Journal of bacteriology.

[4]  S. Akimoto,et al.  R483 and F Plasmid Genes Promoting RNA Degradation: Comparative Restriction Mapping , 1982, Microbiology and immunology.

[5]  Y. Ohnishi,et al.  The roles of RNA polymerase and RNAase I in stable RNA degradation in Escherichia coli carrying the srnB+ gene. , 1983, Biochimica et biophysica acta.

[6]  S. Molin,et al.  Stable inheritance of plasmid R1 requires two different loci , 1985, Journal of bacteriology.

[7]  S. Molin,et al.  Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[8]  S. Akimoto,et al.  Plasmid genes increase membrane permeability in Escherichia coli. , 1986, Biochimica et biophysica acta.

[9]  K. Gerdes,et al.  Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. , 1986, The EMBO journal.

[10]  B. Ganem RNA world , 1987, Nature.

[11]  D. Cram,et al.  Nucleotide sequence and transcriptional analysis of a third function (Flm) involved in F-plasmid maintenance. , 1988, Gene.

[12]  L. Poulsen,et al.  The hok killer gene family in gram-negative bacteria. , 1990, The New biologist.

[13]  J. Martinussen,et al.  Mechanism of post‐segregational killing by the hoklsok system of plasmid R1: sok antisense RNA regulates formation of a hok mRNA species correlated with killing of plasmid‐free cells , 1990, Molecular microbiology.

[14]  L. Poulsen,et al.  Topographic analysis of the toxic Gef protein from Escherichia coli , 1991, Molecular microbiology.

[15]  E. Wagner,et al.  The rifampicin‐inducible genes srn6 from F and pnd from R483 are regulated by antisense RNAs and mediate plasmid maintenance by kiiling of plasmid‐free segregants , 1991, Molecular microbiology.

[16]  L. Poulsen,et al.  Analysis of an Escherichia coli mutant strain resistant to the cell‐killing function encoded by the gef gene family , 1992, Molecular microbiology.

[17]  K. Gerdes,et al.  Mechanism of post-segregational killing by the hok/sok system of plasmid R1. Sok antisense RNA regulates hok gene expression indirectly through the overlapping mok gene. , 1992, Journal of molecular biology.

[18]  E. Wagner,et al.  Mechanism of killer gene activation. Antisense RNA-dependent RNase III cleavage ensures rapid turn-over of the stable hok, srnB and pndA effector messenger RNAs. , 1992, Journal of molecular biology.

[19]  T. Wood,et al.  Temperature and Growth Rate Effects on the hok/sok Killer Locus for Enhanced Plasmid Stability , 1994, Biotechnology progress.

[20]  K. Weaver,et al.  Identification and characterization of an Enterococcus faecalis plasmid pAD1-encoded stability determinant which produces two small RNA molecules necessary for its function. , 1994, Plasmid.

[21]  K. Gerdes,et al.  Programmed cell death in bacteria: translational repression by mRNA end‐pairing , 1996, Molecular microbiology.

[22]  J. Boothroyd,et al.  Use of chimeric recombinant polypeptides to analyse conformational, surface epitopes on trypanosome variant surface glycoproteins , 1996, Molecular microbiology.

[23]  K. Weaver,et al.  Functional analysis of the Enterococcus faecalis plasmid pAD1‐encoded stability determinant par , 1996, Molecular microbiology.

[24]  T. Wood,et al.  Exclusion of T4 phage by the hok/sok killer locus from plasmid R1 , 1996, Journal of bacteriology.

[25]  A. Gultyaev,et al.  Programmed cell death by hok/sok of plasmid R1: processing at the hok mRNA 3'-end triggers structural rearrangements that allow translation and antisense RNA binding. , 1997, Journal of molecular biology.

[26]  T. Wood,et al.  Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability , 1997, Applied and environmental microbiology.

[27]  K. Gerdes,et al.  Multiple hok genes on the chromosome of Escherichia coli , 1999, Molecular microbiology.

[28]  E. Wagner,et al.  Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general U-turn loop structure. , 1999, Journal of molecular biology.

[29]  K. Rudd,et al.  Novel intergenic repeats of Escherichia coli K-12. , 1999, Research in microbiology.

[30]  K. Gerdes,et al.  The antisense RNA of the par locus of pAD1 regulates the expression of a 33‐amino‐acid toxic peptide by an unusual mechanism , 2000, Molecular microbiology.

[31]  K. Weaver,et al.  Antisense RNA regulation of the pAD1 par post‐segregational killing system requires interaction at the 5′ and 3′ ends of the RNAs , 2000, Molecular microbiology.

[32]  H. Margalit,et al.  Novel small RNA-encoding genes in the intergenic regions of Escherichia coli , 2001, Current Biology.

[33]  K. Gerdes,et al.  Temporal Translational Control by a Metastable RNA Structure* , 2001, The Journal of Biological Chemistry.

[34]  K. Gerdes,et al.  Antisense RNA regulation of the par post‐segregational killing system: structural analysis and mechanism of binding of the antisense RNA, RNAII and its target, RNAI , 2001, Molecular microbiology.

[35]  T. Bernhardt,et al.  Breaking free: "protein antibiotics" and phage lysis. , 2002, Research in microbiology.

[36]  Hirotada Mori,et al.  Molecular characterization of long direct repeat (LDR) sequences expressing a stable mRNA encoding for a 35‐amino‐acid cell‐killing peptide and a cis‐encoded small antisense RNA in Escherichia coli , 2002, Molecular microbiology.

[37]  J. Ramos,et al.  Inhibition of growth and induction of apoptosis in human breast cancer by transfection of gef gene , 2003, British Journal of Cancer.

[38]  C. Waters,et al.  Enterococcus faecalis Plasmid pAD1-Encoded Fst Toxin Affects Membrane Permeability and Alters Cellular Responses to Lantibiotics , 2003, Journal of bacteriology.

[39]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[40]  T. Wood,et al.  Antimicrobial properties of the Escherichia coli R1 plasmid host killing peptide. , 2003, Journal of biotechnology.

[41]  J. Vogel,et al.  The Small RNA IstR Inhibits Synthesis of an SOS-Induced Toxic Peptide , 2004, Current Biology.

[42]  Jessica M. Silvaggi,et al.  Small Untranslated RNA Antitoxin in Bacillus subtilis , 2005, Journal of bacteriology.

[43]  G. Storz,et al.  Detection of 5′- and 3′-UTR-derived small RNAs and cis-encoded antisense RNAs in Escherichia coli , 2005, Nucleic acids research.

[44]  Lode Wyns,et al.  Toxin-antitoxin modules as bacterial metabolic stress managers. , 2005, Trends in biochemical sciences.

[45]  K. Gerdes,et al.  Prokaryotic toxin–antitoxin stress response loci , 2005, Nature Reviews Microbiology.

[46]  Omid R Faridani,et al.  Competitive inhibition of natural antisense Sok-RNA interactions activates Hok-mediated cell killing in Escherichia coli , 2006, Nucleic acids research.

[47]  K. Weaver,et al.  Addiction Toxin Fst Has Unique Effects on Chromosome Segregation and Cell Division in Enterococcus faecalis and Bacillussubtilis , 2006, Journal of bacteriology.

[48]  Gisela Storz,et al.  20 Versatile Roles of Small RNA Regulators in Bacteria , 2006 .

[49]  Miguel A R B Castanho,et al.  Cell-penetrating peptides and antimicrobial peptides: how different are they? , 2006, The Biochemical journal.

[50]  T. Link,et al.  Hfq structure, function and ligand binding. , 2007, Current opinion in microbiology.

[51]  G. Storz,et al.  An antisense RNA controls synthesis of an SOS-induced toxin evolved from an antitoxin , 2007, Molecular microbiology.

[52]  H. Aiba Mechanism of RNA silencing by Hfq-binding small RNAs. , 2007, Current opinion in microbiology.

[53]  J. Vogel,et al.  An antisense RNA inhibits translation by competing with standby ribosomes. , 2007, Molecular cell.

[54]  E. Wagner,et al.  RNA antitoxins. , 2007, Current opinion in microbiology.

[55]  S. Altuvia Identification of bacterial small non-coding RNAs: experimental approaches. , 2007, Current opinion in microbiology.

[56]  S. Duquesne,et al.  Structural and Functional Diversity of Microcins, Gene-Encoded Antibacterial Peptides from Enterobacteria , 2007, Journal of Molecular Microbiology and Biotechnology.

[57]  Jonathan Livny,et al.  Identification of small RNAs in diverse bacterial species. , 2007, Current opinion in microbiology.

[58]  G. Storz,et al.  Repression of small toxic protein synthesis by the Sib and OhsC small RNAs , 2008, Molecular microbiology.

[59]  E. Wagner,et al.  A small SOS‐induced toxin is targeted against the inner membrane in Escherichia coli , 2008, Molecular microbiology.