On rough set and fuzzy sublattice

Let L be a lattice with the least element 0 and the greatest element 1 and let θ be a full congruence relation on L. In this paper, the notion of θ-upper and θ-lower approximations of a fuzzy subset of L is introduced and some important properties will be studied.

[1]  Babushri Srinivas Kedukodi,et al.  Reference points and roughness , 2010, Inf. Sci..

[2]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[3]  Bijan Davvaz,et al.  Roughness in Cayley graphs , 2010, Inf. Sci..

[4]  Daniel S. Yeung,et al.  Rough approximations on a complete completely distributive lattice with applications to generalized rough sets , 2006, Inf. Sci..

[5]  Mohammad Mehdi Zahedi,et al.  A characterization of L-fuzzy prime ideals , 1991 .

[6]  Jiye Liang,et al.  A new measure of uncertainty based on knowledge granulation for rough sets , 2009, Inf. Sci..

[7]  Bijan Davvaz,et al.  The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets , 2008, Inf. Sci..

[8]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[9]  Bijan Davvaz,et al.  A short note on algebraic T , 2008, Inf. Sci..

[10]  Lei Zhou,et al.  On characterization of intuitionistic fuzzy rough sets based on intuitionistic fuzzy implicators , 2009, Inf. Sci..

[11]  Bijan Davvaz,et al.  On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings , 2008, Inf. Sci..

[12]  Qi-Mei Xiao,et al.  Rough prime ideals and rough fuzzy prime ideals in semigroups , 2006, Inf. Sci..

[13]  J. Bae ROUGHNESS OF IDEALS IN BCK-ALGEBRAS , 2003 .

[14]  Zdzislaw Pawlak,et al.  Rough sets and intelligent data analysis , 2002, Inf. Sci..

[15]  Guilin Qi,et al.  Rough operations on Boolean algebras , 2005, Inf. Sci..

[16]  Guilong Liu,et al.  Generalized rough sets over fuzzy lattices , 2008, Inf. Sci..

[17]  Nobuaki Kuroki,et al.  Rough Ideals in Semigroups , 1997, Inf. Sci..

[18]  Lingyun Yang,et al.  On Rough Concept Lattices , 2010, ISDT.

[19]  Wen-Xiu Zhang,et al.  The Lower and Upper Approximations of Fuzzy Sets in a Fuzzy Group , 2002, AFSS.

[20]  Bijan Davvaz,et al.  Approximations in Hyperrings , 2009, J. Multiple Valued Log. Soft Comput..

[21]  Bijan Davvaz,et al.  Roughness in rings , 2004, Inf. Sci..

[22]  John N. Mordeson,et al.  Rough set theory applied to (fuzzy) ideal theory , 2001, Fuzzy Sets Syst..

[23]  Bijan Davvaz,et al.  Roughness in MV-algebras , 2010, Inf. Sci..

[24]  Zhongzhi Shi,et al.  A fast approach to attribute reduction in incomplete decision systems with tolerance relation-based rough sets , 2009, Inf. Sci..

[25]  N. Kuroki Fuzzy bi-ideals in semigroups , 1980 .

[26]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[27]  Bijan Davvaz,et al.  Roughness in modules , 2006, Inf. Sci..

[28]  William Zhu,et al.  Relationship among basic concepts in covering-based rough sets , 2009, Inf. Sci..

[29]  Bijan Davvaz,et al.  Roughness based on fuzzy ideals , 2006, Inf. Sci..

[30]  Cory J. Butz,et al.  Rough set based 1-v-1 and 1-v-r approaches to support vector machine multi-classification , 2007, Inf. Sci..