Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki model

We present a computer-assisted proof of heteroclinic connections in the one-dimensional Ohta--Kawasaki model of diblock copolymers. The model is a fourth-order parabolic partial differential equati...

[1]  T. Wanner,et al.  Branch interactions and long-term dynamics for the diblock copolymer model in one dimension , 2013 .

[2]  Xiaofeng Ren,et al.  On energy minimizers of the diblock copolymer problem , 2003 .

[3]  K. Kawasaki,et al.  Equilibrium morphology of block copolymer melts , 1986 .

[4]  Xiaofeng Ren,et al.  Droplet solutions in the diblock copolymer problem with skewed monomer composition , 2006 .

[5]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[6]  Jacek Cyranka Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof , 2013 .

[7]  Jacek Cyranka,et al.  Efficient and Generic Algorithm for Rigorous Integration Forward in Time of dPDEs: Part I , 2014, J. Sci. Comput..

[8]  Evelyn Sander,et al.  Validated Saddle-Node Bifurcations and Applications to Lattice Dynamical Systems , 2016, SIAM J. Appl. Dyn. Syst..

[9]  Daniel Wilczak,et al.  Heteroclinic Connections Between Periodic Orbits in Planar Restricted Circular Three Body Problem. Part II , 2004 .

[10]  Jean-Philippe Lessard,et al.  Computation of Smooth Manifolds Via Rigorous Multi-parameter Continuation in Infinite Dimensions , 2016, Found. Comput. Math..

[11]  J. Lessard,et al.  Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation , 2015, 1509.08648.

[12]  Xiaofeng Ren,et al.  MANY DROPLET PATTERN IN THE CYLINDRICAL PHASE OF DIBLOCK COPOLYMER MORPHOLOGY , 2007 .

[13]  P. Zgliczy'nski,et al.  Rigorous numerics for PDEs with indefinite tail: existence of a periodic solution of the Boussinesq equation with time-dependent forcing , 2015, 1504.04535.

[14]  Piotr Zgliczynski,et al.  Attracting Fixed Points for the Kuramoto-Sivashinsky Equation: A Computer Assisted Proof , 2002, SIAM J. Appl. Dyn. Syst..

[15]  SOLUTIONS OF NONLINEAR PLANAR ELLIPTIC PROBLEMS WITH TRIANGLE SYMMETRY , 1997 .

[16]  D. Wilczak,et al.  Topological method for symmetric periodic orbits for maps with a reversing symmetry , 2004, math/0401145.

[17]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[19]  Evelyn Sander,et al.  Monte Carlo Simulations for Spinodal Decomposition , 1999 .

[20]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[21]  Daniel Wilczak The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof , 2006, Found. Comput. Math..

[22]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[23]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[24]  T. Wanner,et al.  Topological Analysis of the Diblock Copolymer Equation , 2016 .

[25]  P. Zgliczynski,et al.  Covering relations, cone conditions and the stable manifold theorem , 2009 .

[26]  Marian Gidea,et al.  Covering relations for multidimensional dynamical systems , 2004 .

[27]  Christian Reinhardt,et al.  Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra , 2016, J. Nonlinear Sci..

[28]  Yasumasa Nishiura,et al.  Some mathematical aspects of the micro-phase separation in diblock copolymers , 1995 .

[29]  M. Grinfeld,et al.  Counting stationary solutions of the Cahn–Hilliard equation by transversality arguments , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  J. F. Williams,et al.  2D Phase Diagram for Minimizers of a Cahn-Hilliard Functional with Long-Range Interactions , 2011, SIAM J. Appl. Dyn. Syst..

[31]  Konstantin Mischaikow,et al.  Rigorous A Posteriori Computation of (Un)Stable Manifolds and Connecting Orbits for Analytic Maps , 2013, SIAM J. Appl. Dyn. Syst..

[32]  Evelyn Sander,et al.  Unexpectedly Linear Behavior for the Cahn-Hilliard Equation , 2000, SIAM J. Appl. Math..

[33]  T. Wanner Computer-assisted equilibrium validation for the diblock copolymer model , 2016 .

[34]  P. Fife,et al.  Perturbation of doubly periodic solution branches with applications to the Cahn-Hilliard equation , 1997 .

[35]  Dirk Blömker,et al.  Nucleation in the one-dimensional stochastic Cahn-Hilliard model , 2010 .

[36]  T. Wanner Computer-assisted bifurcation diagram validation and applications in materials science , 2018, Rigorous Numerics in Dynamics.

[37]  Konstantin Mischaikow,et al.  Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .

[38]  X. Ren,et al.  On the Derivation of a Density Functional Theory for Microphase Separation of Diblock Copolymers , 2003 .

[39]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[40]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[41]  R. Canosa,et al.  The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces , 2002 .

[42]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[43]  Christopher McCord Mappings and homological properties in the Conley index theory , 1988 .

[44]  Thomas Wanner,et al.  Maximum norms of random sums and transient pattern formation , 2003 .

[45]  Xiaofeng Ren,et al.  Existence and Stability of Spherically Layered Solutions of the Diblock Copolymer Equation , 2006, SIAM J. Appl. Math..

[46]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .

[47]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[48]  Christian Reinhardt,et al.  Fourier–Taylor parameterization of unstable manifolds for parabolic partial differential equations: Formalism, implementation and rigorous validation , 2016, Indagationes Mathematicae.

[49]  Juncheng Wei,et al.  Single Droplet Pattern in the Cylindrical Phase of Diblock Copolymer Morphology , 2007, J. Nonlinear Sci..

[50]  Tomasz Kapela,et al.  A Lohner-type algorithm for control systems and ordinary differential inclusions , 2007, 0712.0910.

[51]  Thomas Wanner,et al.  Structure of the Attractor of the Cahn-hilliard equation on a Square , 2007, Int. J. Bifurc. Chaos.

[52]  Amy Novick-Cohen,et al.  The viscous Cahn-Hilliard equation: Morse decomposition and structure of the global attractor , 1999 .

[53]  Evelyn Sander,et al.  The Dynamics of Nucleation in Stochastic Cahn-Morral Systems , 2011, SIAM J. Appl. Dyn. Syst..

[54]  J. F. Williams,et al.  Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem , 2017 .

[55]  Mark A. Peletier,et al.  On the Phase Diagram for Microphase Separation of Diblock Copolymers: An Approach via a Nonlocal Cahn--Hilliard Functional , 2009, SIAM J. Appl. Math..

[56]  P. Zgliczynski,et al.  Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .

[57]  Jacek Cyranka,et al.  Existence of Globally Attracting Solutions for One-Dimensional Viscous Burgers Equation with Nonautonomous Forcing - A Computer Assisted Proof , 2014, SIAM J. Appl. Dyn. Syst..

[58]  Oono,et al.  Cell dynamical system approach to block copolymers. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[59]  Warwick Tucker,et al.  Fixed points of a destabilized Kuramoto-Sivashinsky equation , 2015, Appl. Math. Comput..