Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell’s Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained with Kirchhoff mask models to those obtained with rigorous models involving solutions of Maxwell’s Equations. In both sets of trials, we used sets of large numbers of patterns, with specifications representative of CL tasks commonly encountered in hyper-NA imaging. In this report we present OPEM solutions based on various mask models and discuss the models’ impact on hyper- NA scanner matching accuracy. We draw conclusions on the accuracy of results obtained with thin mask models vs. the topographic OPEM solutions. We present various examples representative of the scanner image matching for patterns representative of the current generation of IC designs.
[1]
Tomoyuki Matsuyama,et al.
Scanner-dependent optical proximity effects
,
2009,
Advanced Lithography.
[2]
H. Hopkins.
On the diffraction theory of optical images
,
1953,
Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3]
Peter De Bisschop,et al.
Rigorous mask modeling using waveguide and FDTD methods: an assessment for typical hyper-NA imaging problems
,
2006,
Photomask Japan.
[4]
Jacek K. Tyminski,et al.
Finite element models of lithographic mask topography
,
2012,
Advanced Lithography.
[5]
Jan Pomplun,et al.
Topographic mask modeling with reduced basis finite element method
,
2013,
Advanced Lithography.
[6]
Jens Timo Neumann,et al.
Polarization-induced astigmatism caused by topographic masks
,
2007,
SPIE Photomask Technology.
[7]
Andreas Erdmann,et al.
Mask modeling in the low k1 and ultrahigh NA regime: phase and polarization effects (Invited Paper)
,
2005,
Other Conferences.
[8]
Stephen P. Renwick,et al.
The impact of illuminator signatures on optical proximity effects
,
2008,
Lithography Asia.
[9]
Tomoyuki Matsuyama,et al.
Tolerancing analysis of customized illumination for practical applications of source and mask optimization
,
2010,
Advanced Lithography.
[10]
Andreas Erdmann,et al.
Topography effects and wave aberrations in advanced PSM technology
,
2001,
SPIE Advanced Lithography.
[11]
Thomas Schmoeller,et al.
Polarization-dependent proximity effects
,
2007,
SPIE Advanced Lithography.