Changes in the photoluminescence of ultra-weak interlayer coupled MoSe2/PbI2 van der Waals heterostructures

Photo-generated dynamics have been extensively studied in two-dimensional (2D) heterostructures, such as MoSe2/WSe2 and MoSe2/MoS2. Here, we fabricate few-layer PbI2 and monolayer MoSe2 van der Waals (vdW) heterostructures. The excited-wavelength dependent measurements of photoluminescence (PL) and transient dynamic absorption spectra show that there is almost no photo-generated charge transfer between PbI2 and MoSe2. PL changes of MoSe2 are rather dominated by the Fermi level (EF) modulation through the interlayer charge transfer. Density functional theory calculation shows that binding energies in the heterostructures of MoSe2/WSe2 or MoSe2/MoS2 are 2–3 times higher than that of the MoSe2/PbI2 heterostructure, suggesting the weaker interlayer coupling between MoSe2 and PbI2. We propose that the weak interlayer vdW coupling cannot drive the photo-generated interlayer charge transfer while the EF modulation can be achieved through the interlayer charge transfer. The findings will be helpful to fundamental research and applications for novel optoelectronic devices based on 2D material vdW heterostructures.

[1]  Qiaoyan Hao,et al.  Strong Interlayer Transition in Few‐Layer InSe/PdSe2 van der Waals Heterostructure for Near‐Infrared Photodetection , 2021, Advanced Functional Materials.

[2]  Kenji Watanabe,et al.  Strong interaction between interlayer excitons and correlated electrons in WSe2/WS2 moiré superlattice , 2021, Nature Communications.

[3]  Yongli Gao,et al.  Type-II Interface Band Alignment in the vdW PbI2-MoSe2 Heterostructure. , 2020, ACS applied materials & interfaces.

[4]  Kenji Watanabe,et al.  Manipulating charge and energy transfer between 2D atomic layers via heterostructure engineering. , 2020, Nano letters.

[5]  Yongli Gao,et al.  PbI2-MoS2 Heterojunction: Van der Waals Epitaxial Growth and Energy Band Alignment. , 2019, The journal of physical chemistry letters.

[6]  A. Pan,et al.  Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors , 2019, Advanced science.

[7]  Wei Zhu,et al.  Band Structure Engineering of Interfacial Semiconductors Based on Atomically Thin Lead Iodide Crystals , 2018, Advanced materials.

[8]  Yi Shi,et al.  Efficient and Layer‐Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Type‐I Heterostructures , 2018, Advanced materials.

[9]  Congwei Tan,et al.  Low‐Temperature Heteroepitaxy of 2D PbI2/Graphene for Large‐Area Flexible Photodetectors , 2018, Advanced materials.

[10]  Zhiyong Fan,et al.  Stacking-mode confined growth of 2H-MoTe2/MoS2 bilayer heterostructures for UV–vis–IR photodetectors , 2018, Nano Energy.

[11]  Gyuchull Han,et al.  Interstitial Mo‐Assisted Photovoltaic Effect in Multilayer MoSe2 Phototransistors , 2018, Advanced materials.

[12]  Jin-Hong Park,et al.  Highly Efficient Infrared Photodetection in a Gate‐Controllable Van der Waals Heterojunction with Staggered Bandgap Alignment , 2018, Advanced science.

[13]  A. Kis,et al.  Probing the Interlayer Exciton Physics in a MoS2/MoSe2/MoS2 van der Waals Heterostructure. , 2017, Nano letters.

[14]  Molly B. Wilker,et al.  Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures. , 2017, Nano letters.

[15]  Zhongfan Liu,et al.  Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS2/h-BN van der Waals Heterostructures on Au Foils. , 2017, ACS nano.

[16]  J. Lü,et al.  Vertical heterostructures based on SnSe2/MoS2 for high performance photodetectors , 2017 .

[17]  Wei Zheng,et al.  High‐Crystalline 2D Layered PbI2 with Ultrasmooth Surface: Liquid‐Phase Synthesis and Application of High‐Speed Photon Detection , 2016 .

[18]  P. Taheri,et al.  Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides. , 2016, Nano letters.

[19]  Ning Dai,et al.  Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe₂/MoS₂ van der Waals Heterostructures. , 2016, ACS nano.

[20]  A. Suslu,et al.  Exciton pumping across type-I gallium chalcogenide heterojunctions , 2016, Nanotechnology.

[21]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[22]  G. Eda,et al.  Evidence for Fast Interlayer Energy Transfer in MoSe2/WS2 Heterostructures. , 2015, Nano letters.

[23]  Alexey Chernikov,et al.  Probing Interlayer Interactions in Transition Metal Dichalcogenide Heterostructures by Optical Spectroscopy: MoS2/WS2 and MoSe2/WSe2. , 2015, Nano letters.

[24]  Qi Chen,et al.  Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. , 2014, Nano letters.

[25]  P. Ajayan,et al.  Chemical vapor deposition growth of crystalline monolayer MoSe2. , 2014, ACS nano.

[26]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[27]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[28]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[29]  N. Borys,et al.  The Role of Particle Morphology in Interfacial Energy Transfer in CdSe/CdS Heterostructure Nanocrystals , 2010, Science.