Hydrogen and Metal Line Absorption Around Low-Redshift Galaxies in Cosmological Hydrodynamic Simulations

We study the physical conditions of the circum-galactic medium (CGM) around z = 0.25 galaxies as traced by Hi and metal line absorption, using cosmological hydrodynamic simulations that include galactic outflows. Using lines of sight targeted at impact parameters from 10 kpc to 1 Mpc around galaxies with halo masses from 10 11 10 13 M⊙, we study the physical conditions and their variation with impact pa- rameter b and line-of-sight velocityv in the CGM as traced by Hi, Mgii, Siiv, Civ, Ovi, and Neviii absorbers. All ions show a strong excess of absorption near galaxies compared to random lines of sight. The excess continues beyond 1 Mpc, re- flecting the correlation of metal absorption with large-scale structure. Absorption is particularly enhanced within aboutv < 300 kms −1 and roughly 300 kpc of galaxies (with distances somewhat larger for the highest ion), approximately delineating the CGM; this range contains the majority of global metal absorption. Low ions like Mgii and Siiv predominantly arise in denser gas closer to galaxies and drop more rapidly with b, while high ions Ovi and Neviii trace more diffusely distributed gas with a comparatively flat radial profile; Civ is intermediate. All ions predominantly trace T � 10 4−4.5 K photo-ionised gas at all b, but when hot CGM gas is present (mostly in larger halos), we see strong collisionally-ionised Ovi and Neviii at b 6 100 kpc. Larger halo masses generally produce more absorption, though overall the trends are not as strong as that with impact parameter. These findings arise using our favoured outflow scalings as expected for momentum-driven winds; with no winds, the CGM gas remains mostly unenriched, while our outflow model with a constant velocity and mass loading factor produce hotter, more widely dispersed metals.

[1]  J. Xavier Prochaska,et al.  NOT DEAD YET: COOL CIRCUMGALACTIC GAS IN THE HALOS OF EARLY-TYPE GALAXIES , 2012, 1209.5442.

[2]  R. Davé,et al.  The growth of red sequence galaxies in a cosmological hydrodynamic simulation , 2012, 1202.5315.

[3]  R. Simcoe,et al.  A SURVEY OF Mg ii ABSORPTION AT 2 < z < 6 WITH MAGELLAN/FIRE. I. SAMPLE AND EVOLUTION OF THE Mg ii FREQUENCY , 2012, 1201.3919.

[4]  B. Gibson,et al.  MAGICC haloes: confronting simulations with observations of the circumgalactic medium at z = 0 , 2011, 1112.1698.

[5]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[6]  J. Prochaska,et al.  The Hidden Mass and Large Spatial Extent of a Post-Starburst Galaxy Outflow , 2011, Science.

[7]  Irap Toulouse,et al.  Physical properties of galactic winds using background quasars , 2011, 1110.5877.

[8]  J. Prochaska,et al.  THE DIRECT DETECTION OF COOL, METAL-ENRICHED GAS ACCRETION ONTO GALAXIES AT z ∼ 0.5 , 2011, 1110.0837.

[9]  J. Schaye,et al.  Cold accretion flows and the nature of high column density H I absorption at redshift 3 , 2011, 1109.5700.

[10]  J. Prochaska,et al.  THE COS-HALOS SURVEY: KECK LRIS AND MAGELLAN MagE OPTICAL SPECTROSCOPY , 2011, 1108.3852.

[11]  D. Weinberg,et al.  The intergalactic medium over the last 10 billion years - II. Metal-line absorption and physical conditions: Metal-line absorption and physical conditions , 2011, 1106.1444.

[12]  B. Garilli,et al.  THE RADIAL AND AZIMUTHAL PROFILES OF Mg ii ABSORPTION AROUND 0.5 < z < 0.9 zCOSMOS GALAXIES OF DIFFERENT COLORS, MASSES, AND ENVIRONMENTS , 2011, 1106.0616.

[13]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[14]  K. Finlator,et al.  Galaxy evolution in cosmological simulations with outflows ― I. Stellar masses and star formation rates , 2011, 1103.3528.

[15]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[16]  Carnegie Observatories,et al.  PROBING THE INTERGALACTIC MEDIUM/GALAXY CONNECTION. V. ON THE ORIGIN OF Lyα AND O vi ABSORPTION AT z < 0.2 , 2011, 1103.1891.

[17]  Leiden,et al.  Quenching massive galaxies with on-the-fly feedback in cosmological hydrodynamic simulations , 2010, 1012.3166.

[18]  J. Schaye,et al.  Absorption signatures of warm-hot gas at low redshift: O vi , 2010, 1007.2840.

[19]  D. Weinberg,et al.  Intergalactic dust extinction in hydrodynamic cosmological simulations , 2010, 1005.4406.

[20]  K. Finlator,et al.  Smoothly rising star formation histories during the reionization epoch , 2010, 1005.4066.

[21]  Juna A. Kollmeier,et al.  The intergalactic medium over the last 10 billion years – I. Lyα absorption and physical conditions , 2010, 1005.2421.

[22]  P. O. Vandervoort On chaos in the oscillations of galaxies , 2010 .

[23]  J. Tinker,et al.  AN EMPIRICAL CHARACTERIZATION OF EXTENDED COOL GAS AROUND GALAXIES USING Mg ii ABSORPTION FEATURES , 2010, 1004.0705.

[24]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[25]  C. Steidel,et al.  HALO GAS AND GALAXY DISK KINEMATICS DERIVED FROM OBSERVATIONS AND ΛCDM SIMULATIONS OF Mg ii ABSORPTION-SELECTED GALAXIES AT INTERMEDIATE REDSHIFT , 2009, 0912.2746.

[26]  D. Weinberg,et al.  Feedback and recycled wind accretion: assembling the z= 0 galaxy mass function , 2009, 0912.0519.

[27]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[28]  J. Xavier Prochaska,et al.  THE LAST EIGHT-BILLION YEARS OF INTERGALACTIC Si iv EVOLUTION , 2009, 0906.3347.

[29]  B. Savage,et al.  THE RELATIONSHIP BETWEEN INTERGALACTIC H i/O vi AND NEARBY (z < 0.017) GALAXIES , 2009, 0903.2259.

[30]  M. Fukugita,et al.  Measuring the galaxy–mass and galaxy–dust correlations through magnification and reddening , 2009, 0902.4240.

[31]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[32]  K. Finlator,et al.  Tracing the re-ionization-epoch intergalactic medium with metal absorption lines , 2009, 0901.0286.

[33]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[34]  B. Oppenheimer,et al.  The nature and origin of low‐redshift O vi absorbers , 2008, 0806.2866.

[35]  S. Sivanandam,et al.  Enrichment and pre-heating in intragroup gas from galactic outflows , 2008, 0805.1938.

[36]  G. Stinson,et al.  Damped Lyman α systems in galaxy formation simulations , 2008, 0804.4474.

[37]  S. Driver,et al.  On the galaxy stellar mass function, the mass-metallicity relation, and the implied baryonic mass function , 2008, 0804.2892.

[38]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[39]  C. Danforth,et al.  The Low-z Intergalactic Medium. III. H I and Metal Absorbers at z < 0.4 , 2007, 0709.4030.

[40]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[41]  U. N. Dame,et al.  A High-Resolution Survey of Low-Redshift QSO Absorption Lines: Statistics and Physical Conditions of O VI Absorbers , 2007, 0706.1214.

[42]  R. Davé,et al.  The origin of the galaxy mass-metallicity relation and implications for galactic outflows , 2007, 0704.3100.

[43]  C. Steidel,et al.  A Correlation between Galaxy Morphology and Mg II Halo Absorption Strength , 2007, astro-ph/0703377.

[44]  Romeel Dav'eBenjamin D. Oppenheimer The enrichment history of baryons in the Universe , 2006, astro-ph/0608268.

[45]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[46]  E. Rosolowsky,et al.  The Role of Pressure in GMC Formation II: The H2-Pressure Relation , 2006, astro-ph/0605035.

[47]  France,et al.  Where Are the Missing Cosmic Metals? , 2005, astro-ph/0510525.

[48]  S. Penton,et al.  The Galaxy Environment of O VI Absorption Systems , 2005, astro-ph/0509822.

[49]  J. Stocke,et al.  The Low-z Intergalactic Medium. II. Lyβ, O VI, and C III Forest , 2005, astro-ph/0508656.

[50]  R. Davé,et al.  The Physical and Photometric Properties of High-Redshift Galaxies in Cosmological Hydrodynamic Simulations , 2005, astro-ph/0507719.

[51]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[52]  J. Kollmeier,et al.  Galactic Wind Effects on the Lyα Absorption in the Vicinity of Galaxies , 2005, astro-ph/0503674.

[53]  B. Savage,et al.  Detection of Ne VIII in the Low-Redshift Warm-Hot Intergalactic Medium , 2005, astro-ph/0503051.

[54]  A. Dekel,et al.  Galaxy bimodality due to cold flows and shock heating , 2004, astro-ph/0412300.

[55]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[56]  Daniel H. McIntosh,et al.  A First Estimate of the Baryonic Mass Function of Galaxies , 2003, astro-ph/0301616.

[57]  R. Davé,et al.  Lyman Break Galaxies and the Lyα Forest , 2002, astro-ph/0209563.

[58]  R. Davé,et al.  How do galaxies get their gas , 2002, astro-ph/0407095.

[59]  H. W. Moos,et al.  Highly Ionized High-Velocity Gas in the Vicinity of the Galaxy , 2002, astro-ph/0207562.

[60]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2002 .

[61]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation , 2002, astro-ph/0206393.

[62]  V. Springel,et al.  Cosmological SPH simulations: The entropy equation , 2001, astro-ph/0111016.

[63]  Hsiao-Wen Chen,et al.  The Origin of C IV Absorption Systems at Redshifts z < 1: Discovery of Extended C IV Envelopes around Galaxies , 2001, astro-ph/0104403.

[64]  J. Schaye Model-independent Insights into the Nature of the Lyα Forest and the Distribution of Matter in the Universe , 2001, astro-ph/0104272.

[65]  D. Weinberg,et al.  Baryons in the Warm-Hot Intergalactic Medium , 2000, astro-ph/0007217.

[66]  R. Davé,et al.  The Low-Redshift Lyα Forest in Cold Dark Matter Cosmologies , 1998, astro-ph/9807177.

[67]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[68]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[69]  D. Weinberg,et al.  The Observability of Metal Lines Associated with the Lyα Forest , 1997, astro-ph/9708090.

[70]  D. Weinberg,et al.  Voigt-Profile Analysis of the Lyα Forest in a Cold Dark Matter Universe , 1996, astro-ph/9609115.

[71]  L. Hui,et al.  The Statistics of Density Peaks and the Column Density Distribution of the Lyα Forest , 1996, astro-ph/9608157.

[72]  D. Weinberg,et al.  Cosmological Simulations with TreeSPH , 1995, astro-ph/9509107.

[73]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[74]  C. Steidel,et al.  Mg II absorption in the spectra of 103 QSOs : implications for the evolution of gas in high-redshift galaxies , 1992 .

[75]  J. Ostriker,et al.  A theory of the interstellar medium - Three components regulated by supernova explosions in an inhomogeneous substrate , 1977 .

[76]  M. Schmidt The Rate of Star Formation , 1959 .

[77]  Hsiao-Wen Chen,et al.  Submitted to the Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 A STIS SURVEY FOR O VI ABSORPTION SYSTEMS AT 0.12 < Z � 0.5 I.: THE STATISTICAL PROPERTIES OF IONIZED GAS 1 , 2008 .

[78]  M. Zaldarriaga,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 A NEW CALCULATION OF THE IONIZING BACKGROUND SPECTRUM AND THE EFFECTS OF HEII REIONIZATION , 2022 .

[79]  Hsiao-Wen Chen,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/12/04 PROBING THE IGM-GALAXY CONNECTION AT Z < 0.5 I: A GALAXY SURVEY IN QSO FIELDS AND A GALAXY-ABSORBER CROSS-CORRELATION STUDY 1,2 , 2022 .