A kind of $KK$-theory for rings

A group equivariant KK-theory for rings will be defined and studied in analogy to Kasparov’s KK-theory for C∗-algebras. It is a kind of linearization of the category of rings by allowing addition of homomorphisms, imposing also homotopy invariance, invertibility of matrix corner embeddings, and allowing morphisms which are the opposite split of split exact sequences. We demonstrate the potential of this theory by proving for example equivalence induced by Morita equivalence and a Green-Julg isomorphism in this framework.

[1]  Kiiti Morita,et al.  Duality for modules and its applications to the theory of rings with minimum condition , 1958 .

[2]  J. Cuntz Bivariante K-Theorie f?ur lokalkonvexe Algebren und der Chern-Connes-Charakter , 1997 .

[3]  J. Cuntz A new look at KK-theory , 1987 .

[4]  G. Kasparov EquivariantKK-theory and the Novikov conjecture , 1988 .

[5]  S. M. Gersthn Homotopy theory of rings , 1971 .

[6]  M. Rieffel Actions of finite groups on C*-algebras. , 1980 .

[7]  Eugenia Ellis Equivariant algebraic kk-theory and adjointness theorems , 2013, 1301.1491.

[8]  N. Higson Almost Homomorphisms and KK-Theory , 2004 .

[9]  Bivariant $K$-theory and the Weyl algebra , 2004, math/0401295.

[10]  The generators and relations picture of $KK$-theory , 2016, 1602.03034.

[11]  A. Connes,et al.  Classifying Space for Proper Actions and K-Theory of Group C*-algebras , 2004 .

[12]  G. Kasparov THE OPERATOR K-FUNCTOR AND EXTENSIONS OF C*-ALGEBRAS , 1981 .

[13]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[14]  Categories of fractions and excision in KK-theory , 1990 .

[15]  Algebraic K -theory and locally convex algebras , 2005, math/0503417.

[16]  A. Thom,et al.  Bivariant algebraic K-theory , 2006, math/0603531.

[17]  G. Garkusha Algebraic Kasparov $K$-theory. I , 2010, Documenta Mathematica.

[18]  Martin Grensing Universal cycles and homological invariants of locally convex algebras , 2011, 1103.6243.

[19]  Vincent Lafforgue,et al.  K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes , 2002 .

[20]  N. Higson A characterization of KK-theory , 1987 .

[21]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[22]  Exact Sequences for the Kasparov Groups of Graded Algebras , 1985, Canadian Journal of Mathematics.

[23]  N. Higson,et al.  Equivariant E-Theory for C*-Algebras , 2000 .