State-to-state inelastic scattering of Stark-decelerated OH radicals with Ar atoms.

The Stark deceleration method exploits the concepts of charged particle accelerator physics to produce molecular beams with a tunable velocity. These tamed molecular beams offer interesting perspectives for precise crossed beam scattering studies as a function of the collision energy. The method has advanced sufficiently to compete with state-of-the-art beam methods that are used for scattering studies throughout. This is demonstrated here for the scattering of OH radicals (X(2)Pi(3/2), J = 3/2, f) with Ar atoms, a benchmark system for the scattering of open-shell molecules with atoms. Parity-resolved integral state-to-state inelastic scattering cross sections are measured at collision energies between 80 and 800 cm(-1). The threshold behavior and collision energy dependence of 13 inelastic scattering channels is accurately determined. Excellent agreement is obtained with the cross sections predicted by close-coupling scattering calculations based on the most accurate ab initio OH + Ar potential energy surfaces to date.

[1]  J. Kłos,et al.  Erratum: "Orientation and alignment depolarization in OH(X 2Pi)+Ar/He collisions" [J. Chem. Phys. 129, 074304 (2008)]. , 2009, The Journal of chemical physics.

[2]  G. Meijer,et al.  Collision experiments with Stark-decelerated beams. , 2009, Faraday discussions.

[3]  M. Raizen,et al.  Comprehensive Control of Atomic Motion , 2009, Science.

[4]  M. Alexander,et al.  Tensor cross sections and the collisional evolution of state multipoles: OH(X (2)Pi)-Ar. , 2009, The Journal of chemical physics.

[5]  Zhigang Sun,et al.  The Extent of Non–Born-Oppenheimer Coupling in the Reaction of Cl(2P) with para-H2 , 2008, Science.

[6]  J. Kłos,et al.  Orientation and alignment depolarization in OH(X 2Pi)+Ar/He collisions. , 2008, The Journal of chemical physics.

[7]  G. Meijer,et al.  Taming molecular beams , 2008 .

[8]  G. Meijer,et al.  Operation of a Stark decelerator with optimum acceptance , 2008, 0807.4056.

[9]  Dong H. Zhang,et al.  Breakdown of the Born-Oppenheimer Approximation in the F+ o-D2 → DF + D Reaction , 2007, Science.

[10]  T. Kasai,et al.  Effect of mutual configuration between molecular orientation and atomic orientation in the oriented Ar (3P2)+oriented CF3H reaction. , 2007, Physical review letters.

[11]  Beat H. Meier,et al.  Multistage Zeeman deceleration of hydrogen atoms , 2007 .

[12]  C. Heiner A molecular synchrotron , 2007 .

[13]  Kopin Liu Product pair correlation in bimolecular reactions. , 2007, Physical chemistry chemical physics : PCCP.

[14]  T. Kitsopoulos,et al.  Imaging the dynamics of gas phase reactions. , 2006, Physical chemistry chemical physics : PCCP.

[15]  G. Groenenboom,et al.  Near-Threshold Inelastic Collisions Using Molecular Beams with a Tunable Velocity , 2006, Science.

[16]  G. Meijer,et al.  Stark deceleration and trapping of OH radicals. , 2006, Annual review of physical chemistry.

[17]  G. Meijer,et al.  Higher-order resonances in a Stark decelerator , 2005 .

[18]  J. J. Lin,et al.  State-Specific Correlation of Coincident Product Pairs in the F + CD4 Reaction , 2003, Science.

[19]  G. Meijer,et al.  Production and application of translationally cold molecules , 2003 .

[20]  R. Jongma,et al.  Deceleration and trapping of ammonia using time-varying electric fields , 2002 .

[21]  Toshinori Suzuki,et al.  Fully State-Resolved Differential Cross Sections for the Inelastic Scattering of the Open-Shell NO Molecule by Ar , 2001, Science.

[22]  G. Berden,et al.  Molecular reorientation in collisions of OH + Ar. , 2001, Physical review letters.

[23]  J. J. Meulen,et al.  Rotationally inelastic collisions of OH(X 2Π)+Ar. II. The effect of molecular orientation , 2000 .

[24]  J. J. Meulen,et al.  Rotationally inelastic collisions of OH(X 2Π)+Ar. I. State-to-state cross sections , 2000 .

[25]  R. C. Forrey,et al.  Vibrational relaxation of CO by collisions with 4He at ultracold temperatures , 2000 .

[26]  D. Feller,et al.  A CCSDT study of the effects of higher order correlation on spectroscopic constants. I. First row diatomic hydrides , 2000 .

[27]  R. Kendall,et al.  Ab initio potential energy surface for the Ar(1S)+OH(X2Π) interaction and bound rovibrational states , 2000 .

[28]  Martyn D. Wheeler,et al.  Infrared spectroscopy of ArOH: A direct probe of the Ar+OH X2Π potential energy surface , 2000 .

[29]  P. Knowles,et al.  Erratum: “Coupled cluster theory for high spin, open shell reference wave functions” [ J. Chem. Phys. 99, 5219 (1993)] , 2000 .

[30]  R. C. Forrey,et al.  Feshbach resonances in ultracold atom-diatom scattering , 1998 .

[31]  R. Zare,et al.  Beyond state-to-state differential cross sections: determination of product polarization in photoinitiated bimolecular reactions , 1995 .

[32]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[33]  J. J. Meulen,et al.  State‐to‐state cross sections for rotational excitation of OH by collisions with He and Ar , 1993 .

[34]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[35]  Michael C. Heaven,et al.  Spectroscopy and dynamics of hydride radical van der Waals complexes , 1993 .

[36]  Fu-Ming Tao,et al.  Mo/ller–Plesset perturbation investigation of the He2 potential and the role of midbond basis functions , 1992 .

[37]  D. Yarkony A theoretical treatment of the predissociation of the individual rovibronic levels of OH/OD(A 2Σ+) , 1992 .

[38]  L. Giancarlo,et al.  Stimulated emission pumping of intermolecular vibrations in OH–Ar(X 2Π) , 1992 .

[39]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[40]  P. Andresen,et al.  Λ‐doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2 , 1991 .

[41]  S. Stolte Aiming the molecular arrow , 1991, Nature.

[42]  R. Macdonald,et al.  A crossed‐beam study of the state‐resolved integral cross sections for the inelastic scattering of OH(X 2Π) with CO and N2 , 1991 .

[43]  Kopin Liu,et al.  Number density-to-flux transformation revisited: kinematic effects in the use of laser-induced fluorescence for scattering experiments , 1991 .

[44]  J. Jeffries,et al.  Vibrational energy transfer in OH X 2Πi, v=2 and 1 , 1990 .

[45]  Kopin Liu,et al.  The inelastic scattering of 2Π [case (b)] molecules and an understanding of the differing Λ doublet propensities for molecules of π vs π3 orbital occupancy , 1989 .

[46]  R. Macdonald,et al.  State‐to‐state integral cross sections for the inelastic scattering of CH(X 2Π)+He: Rotational rainbow and orbital alignment , 1989 .

[47]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[48]  M. Alexander Quantum treatment of rotationally inelastic collisions involving molecules in II electronic states: New derivation of the coupling potential , 1985 .

[49]  G. Hall,et al.  State‐to‐state vibrational excitation of I2 in collisions with He , 1984 .

[50]  P. Andresen,et al.  Selective Λ‐doublet population of OH in inelastic collisions with H2: A possible pump mechanism for the 2Π1/2 astronomical OH maser , 1984 .

[51]  G. Hall,et al.  Pulsed molecular beam study of state‐to‐state vibrational excitation in He+I2 collisions: Energy dependence of the v=0→1 cross section , 1983 .

[52]  M. Alexander Rotationally inelastic collisions between a diatomic molecule in a2Pi electronic state and a structureless target , 1982 .

[53]  J. S. Hayden,et al.  Direct detection of momentum flux in atomic and molecular beams , 1981 .

[54]  J. A. Coxon Optimum molecular constants and term values for the X2Π(ν ≤ 5) and A2Σ+(ν ≤ 3) states of OH , 1980 .

[55]  J. Maillard,et al.  High-resolution emission spectrum of OH in an oxyacetylene flame from 3.7 to 0.9 μm , 1976 .

[56]  Richard N. Zare,et al.  The labeling of parity doublet levels in linear molecules , 1975 .

[57]  H. M. Crosswhite,et al.  The ultraviolet bands of OH Fundamental data , 1962 .

[58]  H. Kohguchi,et al.  PDN–FTMW spectroscopy of open-shell complexes , 1994 .

[59]  M. Costes,et al.  Kinematic Effects on Laser-induced Fluorescence Measurements Performed in Reactive Crossed Beam Experiments , 1988 .

[60]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[61]  R. Levine,et al.  Molecular Reaction Dynamics and Chemical Reactivity , 1987 .

[62]  Y. Y. Yung,et al.  The He–N2 anisotropic Van der Waals potential. Test of a simple model using state-to-state differential scattering cross-sections , 1982 .

[63]  G. Herzberg,et al.  Spectra of diatomic molecules , 1950 .