Atoms-in-molecules treatment of Li2+ and Li2 using optimum Gaussian approximations of Li+ and Li eigenstates
暂无分享,去创建一个
[1] F. Burden,et al. A comparison of lobe and cartesian gaussian basis sets for molecular calculations , 1972 .
[2] J. P. Chesick,et al. Limited Expansion Gaussian Lobe Orbitals in Ab Initio Studies of Atoms and Molecules , 1971 .
[3] S. Peyerimhoff,et al. Comparison of cartesian and lobe function Gaussian basis sets , 1970 .
[4] J. Bardsley. Pseudopotential calculations of alkali interactions , 1970 .
[5] A. Dalgarno,et al. Pseudo-potential calculation of atomic interactions , 1970 .
[6] J. Pople,et al. Self‐Consistent Molecular‐Orbital Methods. VIII. Molecular Studies with Least Energy Minimal Atomic Orbitals , 1970 .
[7] S. Huzinaga,et al. Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .
[8] P. Kemmey,et al. Calculation of Electronic States of Li + 2 as a Free Ion and in a Point-Ion Lattice , 1969 .
[9] F. O. Ellison,et al. New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves III. Refined Applications to the X 1Σg+ and E 1Σg+ States of H2 , 1969 .
[10] F. O. Ellison,et al. New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves. II. Studies of the Calibration Technique and Applications to HeH+, HeH, He2+, H2−, and He2 , 1968 .
[11] F. O. Ellison,et al. New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves. I. General Theory and Application to H2 and He2+ + , 1967 .
[12] F. O. Ellison,et al. Method of Diatomics in Molecules. V. Theoretical Prediction of Stable Li2H+ and Almost Stable LiH2+ , 1967 .
[13] G. Das. Extended Hartree—Fock Ground‐State Wavefunctions for the Lithium Molecule , 1967 .
[14] F. O. Ellison. Modified Atoms‐in‐Molecules Model for Predicting Diatomic Ground‐ and Excited‐State Potential‐Energy Curves. I. LiH, BeH, and BH , 1965 .
[15] F. O. Ellison,et al. Theoretical Prediction of Stable Li3 , 1965 .
[16] H. Sambe. Use of 1s Gaussian Wavefunctions for Molecular Calculations. I. The Hydrogen Atom and the Hydrogen Molecule Ion , 1965 .
[17] A. C. Hurley. ELIMINATION OF ATOMIC ERRORS FROM MOLECULAR CALCULATIONS , 1963 .
[18] B. Ransil,et al. Studies in Molecular Structure. V. Computed Spectroscopic Constants for Selected Diatomic Molecules of the First Row , 1961 .
[19] R. F. Barrow,et al. Excited Electronic States of Lithium and Sodium Molecules , 1960, Nature.
[20] Frederick Albert Matsen IV,et al. Simple Configuration‐Interaction Wave Functions. I. Two‐Electron Ions: A Numerical Study , 1960 .
[21] B. Ransil. Studies in Molecular Structure. I. Scope and Summary of the Diatomic Molecule Program , 1960 .
[22] T. Arai. General Analysis of Various Methods of Atoms in Molecules , 1960 .
[23] W. Moffitt,et al. Atoms in molecules and crystals , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[24] H. James. Wave‐Mechanical Treatment of the Li2 Molecule , 1934 .
[25] E. Hylleraas,et al. Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .
[26] R. Zare,et al. Dissociation energy of Li2 from laser-excited fluorescence , 1969 .
[27] M. Karplus,et al. Multistructure Valence‐Bond and Atoms‐in‐Molecules Calculations for LiF, F2, and F2− , 1969 .
[28] J. Linnett,et al. Correlated atomic and molecular wavefunctions using limited Gaussian basis sets , 1968 .
[29] A. C. Wahl,et al. Extended Hartree—Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2 , 1966 .
[30] L. Pauling. The Nature Of The Chemical Bond , 1939 .
[31] H. James. Wave Mechanical Treatment of the Molecule Li2 , 1935 .