Atoms-in-molecules treatment of Li2+ and Li2 using optimum Gaussian approximations of Li+ and Li eigenstates

[1]  F. Burden,et al.  A comparison of lobe and cartesian gaussian basis sets for molecular calculations , 1972 .

[2]  J. P. Chesick,et al.  Limited Expansion Gaussian Lobe Orbitals in Ab Initio Studies of Atoms and Molecules , 1971 .

[3]  S. Peyerimhoff,et al.  Comparison of cartesian and lobe function Gaussian basis sets , 1970 .

[4]  J. Bardsley Pseudopotential calculations of alkali interactions , 1970 .

[5]  A. Dalgarno,et al.  Pseudo-potential calculation of atomic interactions , 1970 .

[6]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. VIII. Molecular Studies with Least Energy Minimal Atomic Orbitals , 1970 .

[7]  S. Huzinaga,et al.  Gaussian‐Type Functions for Polyatomic Systems. II , 1970 .

[8]  P. Kemmey,et al.  Calculation of Electronic States of Li + 2 as a Free Ion and in a Point-Ion Lattice , 1969 .

[9]  F. O. Ellison,et al.  New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves III. Refined Applications to the X 1Σg+ and E 1Σg+ States of H2 , 1969 .

[10]  F. O. Ellison,et al.  New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves. II. Studies of the Calibration Technique and Applications to HeH+, HeH, He2+, H2−, and He2 , 1968 .

[11]  F. O. Ellison,et al.  New Scaled Atoms‐in‐Molecules Theory for Predicting Diatomic Potential‐Energy Curves. I. General Theory and Application to H2 and He2+ + , 1967 .

[12]  F. O. Ellison,et al.  Method of Diatomics in Molecules. V. Theoretical Prediction of Stable Li2H+ and Almost Stable LiH2+ , 1967 .

[13]  G. Das Extended Hartree—Fock Ground‐State Wavefunctions for the Lithium Molecule , 1967 .

[14]  F. O. Ellison Modified Atoms‐in‐Molecules Model for Predicting Diatomic Ground‐ and Excited‐State Potential‐Energy Curves. I. LiH, BeH, and BH , 1965 .

[15]  F. O. Ellison,et al.  Theoretical Prediction of Stable Li3 , 1965 .

[16]  H. Sambe Use of 1s Gaussian Wavefunctions for Molecular Calculations. I. The Hydrogen Atom and the Hydrogen Molecule Ion , 1965 .

[17]  A. C. Hurley ELIMINATION OF ATOMIC ERRORS FROM MOLECULAR CALCULATIONS , 1963 .

[18]  B. Ransil,et al.  Studies in Molecular Structure. V. Computed Spectroscopic Constants for Selected Diatomic Molecules of the First Row , 1961 .

[19]  R. F. Barrow,et al.  Excited Electronic States of Lithium and Sodium Molecules , 1960, Nature.

[20]  Frederick Albert Matsen IV,et al.  Simple Configuration‐Interaction Wave Functions. I. Two‐Electron Ions: A Numerical Study , 1960 .

[21]  B. Ransil Studies in Molecular Structure. I. Scope and Summary of the Diatomic Molecule Program , 1960 .

[22]  T. Arai General Analysis of Various Methods of Atoms in Molecules , 1960 .

[23]  W. Moffitt,et al.  Atoms in molecules and crystals , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[24]  H. James Wave‐Mechanical Treatment of the Li2 Molecule , 1934 .

[25]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[26]  R. Zare,et al.  Dissociation energy of Li2 from laser-excited fluorescence , 1969 .

[27]  M. Karplus,et al.  Multistructure Valence‐Bond and Atoms‐in‐Molecules Calculations for LiF, F2, and F2− , 1969 .

[28]  J. Linnett,et al.  Correlated atomic and molecular wavefunctions using limited Gaussian basis sets , 1968 .

[29]  A. C. Wahl,et al.  Extended Hartree—Fock Wavefunctions: Optimized Valence Configurations for H2 and Li2, Optimized Double Configurations for F2 , 1966 .

[30]  L. Pauling The Nature Of The Chemical Bond , 1939 .

[31]  H. James Wave Mechanical Treatment of the Molecule Li2 , 1935 .