Generalized state estimation [power systems]

Power system state estimation derives a real-time network model by extracting information from a redundant data set consisting of telemetered, predicted and static data items. This paper describes a generalized, fully developed, estimation approach that fundamentally improves the information extraction process. Its main contribution is the successful inclusion of topology and parameters in the estimation and bad data analysis processes. This is valuable both in the initial commissioning of a state estimator, and in its routine real-time and study mode application. The approach involves a variety of novel concepts and methods. It is usable in weighted least squares (WLS) and other estimation approaches.

[1]  M. R. Irving,et al.  Substation data validation , 1982 .

[2]  Lamine Mili,et al.  Implementation of the hypothesis testing identification in power system state estimation , 1988 .

[3]  Boming Zhang,et al.  A linear recursive bad data identification method with real-time application to power system state estimation , 1991 .

[4]  Felix F. Wu,et al.  A Hybrid State Estimator: Solving Normal Equations by Orthogonal Transformations , 1985, IEEE Power Engineering Review.

[5]  V. Quintana,et al.  An Orthogonal Row Processing Algorithm for Power System Sequential State Estimation , 1981, IEEE Transactions on Power Apparatus and Systems.

[6]  George N. Korres,et al.  A reduced model for power system observability: analysis and restoration , 1988 .

[7]  Felix F. Wu,et al.  Critical review of external network modelling for online security analysis , 1983 .

[8]  W. F. Tinney,et al.  Enhancement to Givens rotations for power system state estimation , 1991 .

[9]  Anjan Bose,et al.  A topology processor that tracks network modifications , 1988 .

[10]  A. Bose,et al.  Real-time modeling of power networks , 1987, Proceedings of the IEEE.

[11]  Ariovaldo V. Garcia,et al.  Handling discardable measurements in power system state estimation , 1991, [Proceedings] Conference Papers 1991 Power Industry Computer Application Conference.

[12]  V. H. Quintana,et al.  Network parameter estimation using online data with application to transformer tap position estimation , 1988 .

[13]  Felix Wu,et al.  Network Observability: Identification of Observable Islands and Measurement Placement , 1985, IEEE Transactions on Power Apparatus and Systems.

[14]  W.-H. E. Liu,et al.  Parameter error identification and estimation in power system state estimation , 1995 .

[15]  Felix F. Wu,et al.  Observability Analysis for Orthogonal Transformation Based State Estimation , 1986, IEEE Transactions on Power Systems.

[16]  A. Monticelli,et al.  Modeling zero impedance branches in power system state estimation , 1991 .

[17]  A. Monticelli Modeling circuit breakers in weighted least squares state estimation , 1993 .

[18]  A. Monticelli The impact of modeling short circuit branches in state estimation , 1993 .

[19]  Felix F. Wu,et al.  Mutiple Bad Data Identwication for State Estimation by Combinatorial Oftimization , 1986, IEEE Transactions on Power Delivery.

[20]  H. Glavitsch,et al.  Detection and identification of topological errors in online power system analysis , 1991 .

[21]  N. Vempati,et al.  Sequential bad data analysis in state estimation using orthogonal transformations , 1991 .

[22]  Ali Abur,et al.  Identifying the unknown circuit breaker statuses in power networks , 1995 .