A relaxed Hadwiger's Conjecture for list colorings
暂无分享,去创建一个
[1] Reinhard Diestel,et al. Graph Theory , 1997 .
[2] K. Appel,et al. Every planar map is four colorable. Part I: Discharging , 1977 .
[3] A. Thomason. An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.
[4] G. Dirac. A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs , 1952 .
[5] Robin Thomas,et al. The Four-Colour Theorem , 1997, J. Comb. Theory, Ser. B.
[6] K. Wagner. Über eine Eigenschaft der ebenen Komplexe , 1937 .
[7] K. Appel,et al. Every planar map is four colorable. Part II: Reducibility , 1977 .
[8] Ken-ichi Kawarabayashi,et al. Approximating the list-chromatic number and the chromatic number in minor-closed and odd-minor-closed classes of graphs , 2006, STOC '06.
[9] Ken-ichi Kawarabayashi,et al. Linear connectivity forces large complete bipartite minors , 2009, J. Comb. Theory, Ser. B.
[10] Ken-ichi Kawarabayashi,et al. Any 7-Chromatic Graphs Has K7 Or K4,4 As A Minor , 2005, Comb..
[11] Alexandr V. Kostochka,et al. Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..
[12] Andrew Thomason,et al. The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.
[13] J. Thomas. The four color theorem , 1977 .
[14] Robin Thomas,et al. Hadwiger's conjecture forK6-free graphs , 1993, Comb..
[15] A. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .
[16] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.