Unidirectional Lambek Grammars in Polynomial Time

Lambek grammars provide a useful tool for studying formal and natural languages. The generative power of unidirectional Lambek grammars equals that of context-free grammars. However, no feasible algorithm was known for deciding membership in the corresponding formal languages. In this paper we present a polynomial algorithm for deciding whether a given word belongs to a language generated by a given unidirectional Lambek grammar.

[1]  J.F.A.K. van Benthem,et al.  Language in Action: Categories, Lambdas and Dynamic Logic , 1997 .

[2]  Mark Hepple,et al.  Chart Parsing Lambek Grammars: Modal Extensions and Incrementality , 1992, COLING.

[3]  Mati Pentus,et al.  Lambek grammars are context free , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[4]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[5]  Wojciech Buszkowski,et al.  Extending Lambek grammars to basic categorial grammars , 1996, J. Log. Lang. Inf..

[6]  Erik Aarts,et al.  Non-associative Lambek Categorial Grammar in Polynomial Time , 1995, Math. Log. Q..

[7]  Gerald Penn,et al.  A Graph-Theoretic Approach to Sequent Derivability in the Lambek Calculus , 2004, FGMOL.

[8]  Wojciech Buszkowski The Equivalence of Unidirectional Lambek Categorial Grammars and Context-Free Grammars , 1985, Math. Log. Q..

[9]  Walter L. Ruzzo,et al.  Tree-size bounded alternation(Extended Abstract) , 1979, J. Comput. Syst. Sci..

[10]  Christian Retoré,et al.  Handsome proof-nets: perfect matchings and cographs , 2003, Theor. Comput. Sci..

[11]  Allan Borodin,et al.  Two Applications of Inductive Counting for Complementation Problems , 1989, SIAM J. Comput..

[12]  Roman Jakobson,et al.  Structure of Language and Its Mathematical Aspects , 1961 .

[13]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[14]  Yury Savateev The derivability problem for Lambek calculus with one division , 2006 .

[15]  H. Tiede Proof Theory and Formal Grammars: Applications of Normalization , 2003 .

[16]  Neil D. Jones,et al.  Complete problems for deterministic polynomial time , 1974, Symposium on the Theory of Computing.

[17]  H. Venkateswaran Properties that Characterize LOGCFL , 1991, J. Comput. Syst. Sci..

[18]  Philippe de Groote,et al.  A dynamic programming approach to categorial deduction , 1999, CADE.

[19]  Erik Aarts,et al.  Proving theorems of the second order Lambek calculus in polynomial time , 1994, Stud Logica.

[20]  Holger Petersen The Membership Problem for Regular Expressions with Intersection Is Complete in LOGCFL , 2002, STACS.

[21]  Ivan Hal Sudborough,et al.  On the Tape Complexity of Deterministic Context-Free Languages , 1978, JACM.

[22]  Stephen A. Cook,et al.  Characterizations of Pushdown Machines in Terms of Time-Bounded Computers , 1971, J. ACM.

[23]  Mati Pentus,et al.  Lambek calculus is NP-complete , 2006, Theor. Comput. Sci..

[24]  Eric Allender,et al.  P-uniform circuit complexity , 1989, JACM.

[25]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[26]  Philippe de Groote,et al.  The Non-Associative Lambek Calculus with Product in Polynomial Time , 1999, TABLEAUX.

[27]  Joachim Lambek,et al.  On the Calculus of Syntactic Types , 1961 .

[28]  B. Carpenter,et al.  Type-Logical Semantics , 1997 .

[29]  Mati Pentus Product-Free Lambek Calculus and Context-Free Grammars , 1997, J. Symb. Log..