Excitation of single multipolar modes with engineered cylindrically symmetric fields.

We present a new method to address multipolar resonances and to control the scattered field of a spherical scatterer. This method is based on the engineering of the multipolar content of the incident beam. We propose experimentally feasible techniques to generate light beams which contain only a few multipolar modes. The technique uses incident beams with a well defined component of the angular momentum and appropriate focusing with aplanatic lenses. The control of the multipolar content of light beams allow for the excitation of single Mie resonances and unprecedented control of the scattered field from spherical particles.

[1]  Ivan Fernandez-Corbaton,et al.  Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions , 2012, 1206.5563.

[2]  G. Molina-Terriza,et al.  The role of angular momentum in the construction of electromagnetic multipolar fields , 2012, 1206.3623.

[3]  Yuri S. Kivshar,et al.  Experimental verification of the concept of all-dielectric nanoantennas , 2012 .

[4]  B. Luk’yanchuk,et al.  Magnetic light , 2012, Scientific Reports.

[5]  L. Torner,et al.  Characterization of dielectric spheres by spiral imaging. , 2012, Optics letters.

[6]  S. Maier,et al.  Optically induced interaction of magnetic moments in hybrid metamaterials. , 2012, ACS nano.

[7]  C. Qiu,et al.  Single gradientless light beam drags particles as tractor beams. , 2011, Physical review letters.

[8]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[9]  J. Aizpurua,et al.  Strong magnetic response of submicron silicon particles in the infrared. , 2010, Optics express.

[10]  J. Sáenz,et al.  Optical forces on small magnetodielectric particles. , 2010, Optics express.

[11]  Luis Martín-Moreno,et al.  Light passing through subwavelength apertures , 2010 .

[12]  Gabriel Molina-Terriza,et al.  Determination of the total angular momentum of a paraxial beam , 2008 .

[13]  Halina Rubinsztein-Dunlop,et al.  The effect of Mie resonances on trapping in optical tweezers. , 2008, Optics express.

[14]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[15]  Nassiredin M. Mojarad,et al.  Plasmon spectra of nanospheres under a tightly focused beam , 2007, 0711.3649.

[16]  P. Török,et al.  Rigorous analysis of spheres in Gauss-Laguerre beams. , 2007, Optics express.

[17]  Allen Taflove,et al.  Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. , 2004, Optics express.

[18]  T. E. Haynes,et al.  Temperature-controlled surface plasmon resonance in VO (2) nanorods. , 2002, Optics letters.

[19]  Anatolii N Oraevsky,et al.  Whispering-gallery waves , 2002 .

[20]  L. Torner,et al.  Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. , 2001, Physical review letters.

[21]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  R L Byer,et al.  High-resolution spectroscopy of whispering gallery modes in large dielectric spheres. , 1991, Optics letters.

[23]  R. Scanlan,et al.  Resonance, Tacoma Narrows bridge failure, and undergraduate physics textbooks , 1991 .

[24]  P. Barber,et al.  Absorption and scattering of light by small particles , 1984 .

[25]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[26]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[27]  A. Taflove,et al.  Photonic nanojets , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[28]  V. Weisskopf,et al.  Effects of Configuration Interaction on Intensities and Phase Shifts , 2001 .