Electrical conductivity studies in (Ag3AsS3)x(As2S3)1−x superionic glasses and composites

Compositional, frequency, and temperature studies of impedance and electrical conductivity in (Ag3AsS3)x(As2S3)1−x superionic glasses and composites were performed. Frequency range from 10 Hz to 3 × 109 Hz and temperature interval 300–400 K were used for the measurements. Compositional dependences of electrical conductivity and activation energy are analyzed; the most substantial changes are observed with the transition from (Ag3AsS3)0.4(As2S3)0.6 glass to (Ag3AsS3)0.5(As2S3)0.5 composite. With increase of Ag3AsS3 content, the investigated materials are found to have crystalline inclusions and show the two-phase composite nature. Addition of Ag3AsS3 leads to the increase of electrical conductivity whereas the activation energy decreases.

[1]  Eugene Bychkov,et al.  Ion transport regimes in chalcogenide and chalcohalide glasses : from the host to the cation-related network connectivity. , 2002 .

[2]  E. Bychkov Superionic and ion-conducting chalcogenide glasses: Transport regimes and structural features , 2009 .

[3]  A. Orliukas,et al.  Broadband high frequency impedance spectrometer with working temperatures up to 1200 K , 2011 .

[4]  Y. Vlasov,et al.  110Ag tracer diffusion study of percolation transition in Ag2S–As2S3 glasses , 2000 .

[5]  N. Kuwata,et al.  Ion transport and structure in chalcogenide glasses , 2003 .

[6]  A. Pradel,et al.  Percolation transition in Ag-doped chalcogenide glasses: comparison of classical percolation and dynamic structure models , 1998 .

[7]  J. Macák,et al.  Evaluation of impedance spectra of ionic-transport materials by a random-walk approach considering electrode and bulk response , 2013 .

[8]  P. Boolchand,et al.  Origin of Conductivity Threshold in the Solid Electrolyte Glass System: $( \hbox{Ag}_{2} \hbox{S})_{x}( \hbox{As}_{2} \hbox{S}_{3})_{1-x}$ , 2007, IEEE Transactions on Nanotechnology.

[9]  J. Kolář,et al.  Conductivity in Ag–As–S(Se, Te) chalcogenide glasses , 2010 .

[10]  L. Bobb,et al.  Electrical Properties of As2S3 Glass , 1976 .

[11]  Edvardas Kazakevičius,et al.  Structural and electrical investigation of (Ag3AsS3)x(As2S3)1−x superionic glasses , 2012 .

[12]  Carlos León,et al.  A combined molecular dynamics simulation, experimental and coupling model study of the ion dynamics in glassy ionic conductors , 2003 .

[13]  Kyuman Cho,et al.  Quantitative analysis of photoinduced phenomena in amorphous As2S3 thin films using the scanning homodyne multiport interferometer , 2005 .

[14]  T. Wágner,et al.  Diffusion of Ag ions under random potential barriers in silver-containing chalcogenide glasses , 2012 .

[15]  David Alan Drabold,et al.  Ab initio determination of ion traps and the dynamics of silver in silver-doped chalcogenide glass , 2008, 0811.1982.

[16]  J. Teteris,et al.  On thermal influence of laser beam irradiation on optical absorption of amorphous as-evaporated As2S3 films , 1998 .

[17]  A. Pietraszko,et al.  Silver transfer in proustite Ag3AsS3 at high temperatures: Conductivity and single-crystal X-ray studies , 2009 .

[18]  T. Wágner,et al.  Properties and structure of Agx(As0.33S0.67)100−x bulk glasses , 2007 .

[19]  T. Babeva,et al.  Photoinduced changes in the optical properties of obliquely deposited a-As2S3 thin films , 2002 .