The Optical/Near-infrared Extinction Law in Highly Reddened Regions

A precise extinction law is a critical input when interpreting observations of highly reddened sources such as young star clusters and the Galactic Center (GC). We use Hubble Space Telescope observations of a region of moderate extinction and a region of high extinction to measure the optical and near-infrared extinction law (0.8–2.2 μm). The moderate-extinction region is the young massive cluster Westerlund 1 (Wd1; AKs ∼ 0.6 mag), where 453 proper-motion selected main-sequence stars are used to measure the shape of the extinction law. To quantify the shape, we define the parameter , which behaves similarly to a color-excess ratio, but is continuous as a function of wavelength. The high-extinction region is the GC (AKs ∼ 2.5 mag), where 819 red clump stars are used to determine the normalization of the law. The best-fit extinction law is able to reproduce the Wd1 main-sequence colors, which previous laws misestimate by 10%–30%. The law is inconsistent with a single power law, even when only the near-infrared filters are considered, and has AF125W/AKs and AF814W/AKs values that are 18% and 24% higher than the commonly used Nishiyama et al. law, respectively. Using this law, we recalculate the Wd1 distance to be 3905 ± 422 pc from published observations of the eclipsing binary W13. This new extinction law should be used for highly reddened populations in the Milky Way, such as the Quintuplet cluster and Young Nuclear Cluster. A python code is provided to generate the law for future use.

[1]  N. Neumayer,et al.  GALACTICNUCLEUS: A high angular-resolution JHKs imaging survey of the Galactic centre , 2017, Astronomy & Astrophysics.

[2]  S. Lucatello,et al.  Chemical evolution of the Galactic bulge as traced by microlensed dwarf and subgiant stars - III. Detection of lithium in the metal-poor bulge dwarf MOA-2010-BLG-285S , 2010, 1009.5792.

[3]  A. Omont,et al.  86 GHz SiO maser survey of late-type stars in the Inner Galaxy , 2002, Astronomy & Astrophysics.

[4]  J. Bovy,et al.  Absolute Magnitudes of Seismic Red Clumps in the Kepler Field and SAGA: The Age Dependency of the Distance Scale , 2017, 1704.03903.

[5]  J. Brinkmann,et al.  Baade's window and APOGEE. Metallicities, ages, and chemical abundances , 2017, 1702.01547.

[6]  T. Henning,et al.  Mid-infrared Extinction and Fresh Silicate Dust Toward the Galactic Center , 2017, 1701.08823.

[7]  M. Meyer,et al.  Very low-mass stellar content of the young supermassive Galactic star cluster Westerlund 1 , 2016, 1602.05918.

[8]  Richard de Grijs,et al.  CLUSTERING OF LOCAL GROUP DISTANCES: PUBLICATION BIAS OR CORRELATED MEASUREMENTS? IV. THE GALACTIC CENTER , 2016, 1610.02457.

[9]  L. Girardi Red Clump Stars , 2016 .

[10]  Peter L. Wizinowich,et al.  The AIROPA software package: milestones for testing general relativity in the strong gravity regime with AO , 2016, Astronomical Telescopes + Instrumentation.

[11]  D. Minniti,et al.  Constraining Dust Extinction Properties via the VVV Survey , 2016, 1607.08623.

[12]  Jessica R. Lu,et al.  AN IMPROVED DISTANCE AND MASS ESTIMATE FOR SGR A* FROM A MULTISTAR ORBIT ANALYSIS , 2016, 1607.05726.

[13]  R. Blum,et al.  Extinction law in the range 0.4 - 4.8 μm and the 8620 Å DIB towards the stellar cluster Westerlund 1 , 2016, 1607.04639.

[14]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[15]  H. Rix,et al.  THE OPTICAL–INFRARED EXTINCTION CURVE AND ITS VARIATION IN THE MILKY WAY , 2016, 1602.03928.

[16]  E. Grebel,et al.  Hubble Tarantula Treasury Project – IV. The extinction law , 2015, 1510.08436.

[17]  G. Zasowski,et al.  Interstellar extinction curve variations towards the inner Milky Way: a challenge to observational cosmology , 2015, 1510.01321.

[18]  H. Rix,et al.  THE STELLAR POPULATION STRUCTURE OF THE GALACTIC DISK , 2015, 1509.05796.

[19]  A. Seth,et al.  KMOS view of the Galactic Centre I: Young Stars are centrally concentrated , 2015, 1509.04707.

[20]  J. Borissova,et al.  Atlas of CMFGEN Models for OB Massive Stars , 2015 .

[21]  O. Gerhard,et al.  The structure of the Milky Way's bar outside the bulge , 2015, 1504.01401.

[22]  M. Schultheis,et al.  The Gaia-ESO Survey: Tracing interstellar extinction , 2015, 1502.03223.

[23]  T. Lauer,et al.  THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. X. ULTRAVIOLET TO INFRARED PHOTOMETRY OF 117 MILLION EQUIDISTANT STARS , 2014, 1409.0899.

[24]  B. Jiang,et al.  UNIVERSALITY OF THE NEAR-INFRARED EXTINCTION LAW BASED ON THE APOGEE SURVEY , 2014, 1405.1171.

[25]  A. Merloni,et al.  X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue , 2014, 1402.0004.

[26]  E. Anderson,et al.  Two estimates of the distance to the Galactic Centre , 2013, 1309.2629.

[27]  O. Gerhard,et al.  Mapping the three-dimensional density of the galactic bulge with VVV red clump stars , 2013, 1308.0593.

[28]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[29]  N. Rowell The star formation history of the solar neighbourhood from the white dwarf luminosity function , 2013, 1306.4195.

[30]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[31]  D. Minniti,et al.  Reddening and metallicity maps of the Milky Way bulge from VVV and 2MASS - III. The first global photometric metallicity map of the Galactic bulge , 2013, 1302.0243.

[32]  W. Brandner,et al.  The Arches cluster out to its tidal radius: dynamical mass segregation and the effect of the extinction law on the stellar mass function , 2012, 1212.3355.

[33]  R. J. Wainscoat,et al.  THE Pan-STARRS1 PHOTOMETRIC SYSTEM , 2012, 1203.0297.

[34]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[35]  R. de Grijs,et al.  Vvv dr1: the first data release of the milky way bulge and southern plane from the near-infrared eso public survey vista variables in the via lactea , 2011, 1111.5511.

[36]  John E. Krist,et al.  20 years of Hubble Space Telescope optical modeling using Tiny Tim , 2011 .

[37]  C. Babusiaux,et al.  The metallicity distribution of bulge clump giants in Baade’s window , 2011, 1107.5199.

[38]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[39]  A. Bonanos,et al.  Fundamental Parameters of Four Massive Eclipsing Binaries in Westerlund 1 , 2011, Proceedings of the International Astronomical Union.

[40]  R. Genzel,et al.  LINE DERIVED INFRARED EXTINCTION TOWARD THE GALACTIC CENTER , 2011, 1105.2822.

[41]  Heidelberg,et al.  Mass segregation and elongation of the starburst cluster Westerlund 1 , 2010, 1011.5223.

[42]  N. Langer,et al.  A VLT/FLAMES survey for massive binaries in Westerlund 1. II. Dynamical constraints on magnetar progenitor masses , 2010, 1008.2840.

[43]  I. Negueruela,et al.  The population of OB supergiants in the starburst cluster Westerlund 1 , 2010, 1003.5204.

[44]  I. Negueruela,et al.  A serendipitous survey for variability amongst the massive stellar population of Westerlund 1 , 2010, 1003.5107.

[45]  R. de Grijs,et al.  VISTA Variables in the Via Lactea (VVV): The public ESO near-IR variability survey of the Milky Way , 2009, 0912.1056.

[46]  S. Dougherty,et al.  Radio emission from the massive stars in the galactic super star cluster Westerlund 1 , 2009, 0912.4165.

[47]  K. Mužić,et al.  Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster , 2009, 0912.1273.

[48]  R. Schoedel Accurate photometry with adaptive optics in the presence of anisoplanatic effects with a sparsely sampled PSF , 2009 .

[49]  J. Binney,et al.  Kinematics and history of the solar neighbourhood revisited , 2009, 0905.2512.

[50]  Edward L. Fitzpatrick,et al.  AN ANALYSIS OF THE SHAPES OF INTERSTELLAR EXTINCTION CURVES. VI. THE NEAR-IR EXTINCTION LAW , 2009, 0905.0133.

[51]  M. Tamura,et al.  INTERSTELLAR EXTINCTION LAW TOWARD THE GALACTIC CENTER III: J, H, KS BANDS IN THE 2MASS AND THE MKO SYSTEMS, AND 3.6, 4.5, 5.8, 8.0 μm IN THE SPITZER/IRAC SYSTEM , 2009, 0902.3095.

[52]  F. Feroz,et al.  MultiNest: an efficient and robust Bayesian inference tool for cosmology and particle physics , 2008, 0809.3437.

[53]  A. Riess,et al.  WFC3 SMOV Proposal 11450: The Photometric Performance and Calibration of WFC3/UVIS , 2009 .

[54]  M. Livio,et al.  Stellar Proper Motions in the Galactic Bulge from Deep Hubble Space Telescope ACS WFC Photometry , 2008, 0809.1682.

[55]  M. Groenewegen The red clump absolute magnitude based on revised Hipparcos parallaxes , 2008, 0807.2764.

[56]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GLOBULAR CLUSTERS. V. GENERATING A COMPREHENSIVE STAR CATALOG FOR EACH CLUSTER , 2008 .

[57]  Ryo Kandori,et al.  The Interstellar Extinction Law toward the Galactic Center. II. V, J, H, and Ks Bands , 2008, 0802.3559.

[58]  Wolfgang Brandner,et al.  Intermediate to low-mass stellar content of Westerlund 1 , 2007, 0711.1624.

[59]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[60]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[61]  S. Dougherty,et al.  The distance and neutral environment of the massive stellar cluster Westerlund 1 , 2007, 0704.3073.

[62]  Variability of Young Massive Stars in the Galactic Super Star Cluster Westerlund 1 , 2007, astro-ph/0702614.

[63]  P. Moroni,et al.  Recovering the star formation rate in the solar neighborhood , 2006, astro-ph/0608654.

[64]  W. Vacca,et al.  A census of the Wolf–Rayet content in Westerlund 1 from near-infrared imaging and spectroscopy , 2006, astro-ph/0608356.

[65]  F. Martins,et al.  UBVJHK synthetic photometry of Galactic O stars , 2006, astro-ph/0606587.

[66]  O. Bienaym'e,et al.  Elemental abundances in the atmosphere of clump giants , 2006, astro-ph/0605615.

[67]  S. McMillan,et al.  A Neutron Star with a Massive Progenitor in Westerlund 1 , 2005, astro-ph/0509408.

[68]  Paul A. Crowther,et al.  On the massive stellar population of the super star cluster Westerlund 1 , 2005 .

[69]  D. Figer,et al.  Theoretical Isochrones with Extinction in the K Band , 2005, astro-ph/0505089.

[70]  S. Lumsden,et al.  The near-infrared extinction law in regions of high AV , 2005, astro-ph/0502407.

[71]  W. Vacca,et al.  “The Mauna Kea Observatories Near‐Infrared Filter Set. III. Isophotal Wavelengths and Absolute Calibration” (PASP, 117, 421 [2005]) , 2005, astro-ph/0502120.

[72]  R. Indebetouw,et al.  The Wavelength Dependence of Interstellar Extinction from 1.25 to 8.0 μm Using GLIMPSE Data , 2004, astro-ph/0406403.

[73]  I. Negueruela,et al.  A newly identified Luminous Blue Variable in the galactic starburst cluster Westerlund 1 , 2003, astro-ph/0312058.

[74]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[75]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[76]  Wm. A. Wheaton,et al.  Spectral Irradiance Calibration in the Infrared. XIV. The Absolute Calibration of 2MASS , 2003, astro-ph/0304350.

[77]  R. Rich,et al.  Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry , 2002, astro-ph/0210660.

[78]  Liverpool John Moores University,et al.  Population effects on the red giant clump absolute magnitude: The K-band , 2002, astro-ph/0208057.

[79]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[80]  E. Nasi,et al.  Star Formation History in the Solar Vicinity , 2001 .

[81]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[82]  Andrew E. Dolphin,et al.  WFPC2 Stellar Photometry with HSTphot , 2000, astro-ph/0006217.

[83]  Emiliano Diolaiti,et al.  StarFinder: an IDL GUI-based code to analyze crowded fields with isoplanatic correcting PSF fitting , 2000, Astronomical Telescopes and Instrumentation.

[84]  D. Alves K-Band Calibration of the Red Clump Luminosity , 2000, astro-ph/0003329.

[85]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[86]  Peter G. Martin,et al.  Interstellar Extinction and Polarization in the Infrared , 1990 .

[87]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[88]  G. Rieke,et al.  The interstellar extinction law from 1 to 13 microns. , 1985 .

[89]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[90]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .