Interior Proximal Algorithm for Quasiconvex Programming Problems and Variational Inequalities with Linear Constraints

In this paper, we propose two interior proximal algorithms inspired by the logarithmic-quadratic proximal method. The first method we propose is for general linearly constrained quasiconvex minimization problems. For this method, we prove global convergence when the regularization parameters go to zero. The latter assumption can be dropped when the function is assumed to be pseudoconvex. We also obtain convergence results for quasimonotone variational inequalities, which are more general than monotone ones.

[1]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[2]  Didier Aussel,et al.  Subdifferential characterization of quasiconvexity and convexity , 1994 .

[3]  J. Penot,et al.  Characterization of Solution Sets of Quasiconvex Programs , 2003 .

[4]  Jein-Shan Chen,et al.  A proximal-like algorithm for a class of nonconvex programming , 2008 .

[5]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[6]  Juan Enrique Martínez-Legaz,et al.  Lower subdifferentiability in minimax fractional programming , 1999 .

[7]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[8]  Marc Teboulle,et al.  Interior Gradient and Epsilon-Subgradient Descent Methods for Constrained Convex Minimization , 2004, Math. Oper. Res..

[9]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[10]  Y. Censor,et al.  Proximal minimization algorithm withD-functions , 1992 .

[11]  Nicolas Hadjisavvas,et al.  Characterization of Nonsmooth Semistrictly Quasiconvex and Strictly Quasiconvex Functions , 1999 .

[12]  S. Karamardian Complementarity problems over cones with monotone and pseudomonotone maps , 1976 .

[13]  Marc Teboulle,et al.  A Logarithmic-Quadratic Proximal Method for Variational Inequalities , 1999, Comput. Optim. Appl..

[14]  Didier Aussel Subdifferential Properties of Quasiconvex and Pseudoconvex Functions: Unified Approach , 1998 .

[15]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[16]  Abdellah Bnouhachem An LQP Method for Pseudomonotone Variational Inequalities , 2006, J. Glob. Optim..

[17]  Marc Teboulle,et al.  Interior Proximal and Multiplier Methods Based on Second Order Homogeneous Kernels , 1999, Math. Oper. Res..

[18]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[19]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[20]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[21]  João X. da Cruz Neto,et al.  A proximal method with separable Bregman distances for quasiconvex minimization over the nonnegative orthant , 2010, Eur. J. Oper. Res..

[22]  Marc Teboulle,et al.  Convergence of Proximal-Like Algorithms , 1997, SIAM J. Optim..

[23]  Nicolas Hadjisavvas Continuity and Maximality Properties of Pseudomonotone Operators , 2003 .

[24]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[25]  L. Vandenberghe,et al.  Quasiconvex Optimization and Location Theory , 1998 .

[26]  F.G.M. Cunha,et al.  A proximal point algorithm with a ϕ-divergence for quasiconvex programming , 2010 .

[27]  N. El Farouq,et al.  Pseudomonotone Variational Inequalities: Convergence of the Auxiliary Problem Method , 2001 .