Physical descriptions of experimental selectivity measurements in ion channels
暂无分享,去创建一个
[1] D. Goulding,et al. Size selectivity of narrow pores. , 2000, Physical review letters.
[2] R. Oppermann. The principles of electrochemistry , 1939 .
[3] Farrington Daniels,et al. Physical Chemistry, 2nd Ed. , 1961 .
[4] J. Cole,et al. Multiple Scale and Singular Perturbation Methods , 1996 .
[5] A. Nitzan,et al. A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.
[6] J. Lear,et al. Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.
[7] J. Zemaitis,et al. Handbook of aqueous electrolyte thermodynamics , 1986 .
[8] S. Selberherr. Analysis and simulation of semiconductor devices , 1984 .
[9] R. W. Kelsall,et al. The Monte Carlo method for semiconductor device simulation , 1995 .
[10] Duncan A. MacInnes,et al. The principlēs of electrochemistry , 1944 .
[11] R. Eisenberg,et al. Constant fields and constant gradients in open ionic channels. , 1992, Biophysical journal.
[12] B. Eisenberg,et al. Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.
[13] M. Kurnikova,et al. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.
[14] D. Goulding,et al. Entropic selectivity of microporous materials , 2001 .
[15] B. Eisenberg,et al. Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.
[16] B. Hille. Ionic channels of excitable membranes , 2001 .
[17] W. Im,et al. A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.
[18] G. Milazzo. Physical chemistry : 2nd edn., F. Daniels and R.A. Alberty. John Wiley. N.Y., 1961, x + 744 pages, $ 8.75 , 1962 .
[19] L. Xu,et al. Permeation through the calcium release channel of cardiac muscle. , 1997, Biophysical journal.
[20] P. Turq,et al. REAL IONIC SOLUTIONS IN THE MEAN SPHERICAL APPROXIMATION. 1. SIMPLE SALTS IN THE PRIMITIVE MODEL , 1996 .
[21] Robert S. Eisenberg,et al. Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..
[22] J. Barthel,et al. Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .
[23] B. Nadler,et al. Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] Hartmut Löwen,et al. Fundamental-measure free-energy density functional for hard spheres: Dimensional crossover and freezing , 1997 .
[25] Serge Durand-Vidal,et al. Electrolytes at interfaces , 2000 .
[26] Dirk Gillespie,et al. Ion Accumulation in a Biological Calcium Channel: Effects of Solvent and Confining Pressure , 2001 .
[27] Heinz K. Henisch,et al. Semi-conductor contacts : an approach to ideas and models , 1984 .
[28] D. E. Goldman. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.
[29] Rob D. Coalson,et al. A molecular dynamics study of dielectric friction , 1996 .
[30] L. Xu,et al. Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. , 1999, Biophysical journal.
[31] Y. Rosenfeld,et al. Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas , 1993 .
[32] A. Hodgkin,et al. The effect of temperature on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.
[33] R. Eisenberg,et al. Modified Donnan potentials for ion transport through biological ion channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.