Physical descriptions of experimental selectivity measurements in ion channels

Abstract. Three experiments that quantify the amount of selectivity exhibited by a biological ion channel are examined with Poisson-Nernst-Planck (PNP) theory. Conductance ratios and the conductance mole fraction experiments are examined by considering a simple model ion channel for which an approximate solution to the PNP equations with Donnan boundary conditions is derived. A more general result is derived for the Goldman-Hodgkin-Katz permeability ratio. The results show that (1) the conductance ratio measures the ratio of the diffusion coefficients of the ions inside the channel, (2) the mole fraction experiment measures the difference of the excess chemical potentials of the ions inside the channel, and (3) the permeability ratio measures both diffusion coefficients and excess chemical potentials. The results are used to divide selectivity into two components: partitioning, an equilibrium measure of how well the ions enter the channel, and diffusion, a nonequilibrium measure of how well the ions move through the channel.

[1]  D. Goulding,et al.  Size selectivity of narrow pores. , 2000, Physical review letters.

[2]  R. Oppermann The principles of electrochemistry , 1939 .

[3]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[4]  J. Cole,et al.  Multiple Scale and Singular Perturbation Methods , 1996 .

[5]  A. Nitzan,et al.  A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel. , 1999, Biophysical journal.

[6]  J. Lear,et al.  Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. , 1997, Biophysical journal.

[7]  J. Zemaitis,et al.  Handbook of aqueous electrolyte thermodynamics , 1986 .

[8]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[9]  R. W. Kelsall,et al.  The Monte Carlo method for semiconductor device simulation , 1995 .

[10]  Duncan A. MacInnes,et al.  The principlēs of electrochemistry , 1944 .

[11]  R. Eisenberg,et al.  Constant fields and constant gradients in open ionic channels. , 1992, Biophysical journal.

[12]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.

[13]  M. Kurnikova,et al.  Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance. , 2000, Biophysical journal.

[14]  D. Goulding,et al.  Entropic selectivity of microporous materials , 2001 .

[15]  B. Eisenberg,et al.  Ion permeation and glutamate residues linked by Poisson-Nernst-Planck theory in L-type calcium channels. , 1998, Biophysical journal.

[16]  B. Hille Ionic channels of excitable membranes , 2001 .

[17]  W. Im,et al.  A Grand Canonical Monte Carlo-Brownian dynamics algorithm for simulating ion channels. , 2000, Biophysical journal.

[18]  G. Milazzo Physical chemistry : 2nd edn., F. Daniels and R.A. Alberty. John Wiley. N.Y., 1961, x + 744 pages, $ 8.75 , 1962 .

[19]  L. Xu,et al.  Permeation through the calcium release channel of cardiac muscle. , 1997, Biophysical journal.

[20]  P. Turq,et al.  REAL IONIC SOLUTIONS IN THE MEAN SPHERICAL APPROXIMATION. 1. SIMPLE SALTS IN THE PRIMITIVE MODEL , 1996 .

[21]  Robert S. Eisenberg,et al.  Two- and Three-Dimensional Poisson–Nernst–Planck Simulations of Current Flow Through Gramicidin A , 2002, J. Sci. Comput..

[22]  J. Barthel,et al.  Physical Chemistry of Electrolyte Solutions: Modern Aspects , 1998 .

[23]  B. Nadler,et al.  Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Hartmut Löwen,et al.  Fundamental-measure free-energy density functional for hard spheres: Dimensional crossover and freezing , 1997 .

[25]  Serge Durand-Vidal,et al.  Electrolytes at interfaces , 2000 .

[26]  Dirk Gillespie,et al.  Ion Accumulation in a Biological Calcium Channel: Effects of Solvent and Confining Pressure , 2001 .

[27]  Heinz K. Henisch,et al.  Semi-conductor contacts : an approach to ideas and models , 1984 .

[28]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[29]  Rob D. Coalson,et al.  A molecular dynamics study of dielectric friction , 1996 .

[30]  L. Xu,et al.  Selectivity and permeation in calcium release channel of cardiac muscle: alkali metal ions. , 1999, Biophysical journal.

[31]  Y. Rosenfeld,et al.  Free energy model for inhomogeneous fluid mixtures: Yukawa‐charged hard spheres, general interactions, and plasmas , 1993 .

[32]  A. Hodgkin,et al.  The effect of temperature on the electrical activity of the giant axon of the squid , 1949, The Journal of physiology.

[33]  R. Eisenberg,et al.  Modified Donnan potentials for ion transport through biological ion channels. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.