Divide to conquer: decomposition methods for energy optimization

Modern electricity systems provide a plethora of challenging issues in optimization. The increasing penetration of low carbon renewable sources of energy introduces uncertainty in problems traditionally modeled in a deterministic setting. The liberalization of the electricity sector brought the need of designing sound markets, ensuring capacity investments while properly reflecting strategic interactions. In all these problems, hedging risk, possibly in a dynamic manner, is also a concern. The fact of representing uncertainty and/or competition of different companies in a multi-settlement power market considerably increases the number of variables and constraints. For this reason, usually a trade-off needs to be found between modeling and numerical tractability: the more details are brought into the model, the harder becomes the optimization problem. For structured optimization and generalized equilibrium problems, we explore some variants of solution methods based on Lagrangian relaxation and on Benders decomposition. Throughout we keep as a leading thread the actual practical value of such techniques in terms of their efficiency to solve energy related problems.

[1]  Uday V. Shanbhag,et al.  Strategic behavior in power markets under uncertainty , 2011 .

[2]  Susana Scheimberg,et al.  Inexact Bundle Methods for Two-Stage Stochastic Programming , 2011, SIAM J. Optim..

[3]  Antonio J. Conejo,et al.  Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem , 1999 .

[4]  Claudia A. Sagastizábal,et al.  Risk-averse feasible policies for large-scale multistage stochastic linear programs , 2013, Math. Program..

[5]  Michael Jünger,et al.  Computational Combinatorial Optimization , 2001, Lecture Notes in Computer Science.

[6]  M.E.P. Maceira,et al.  Assessment of Lagrangian Relaxation with Variable Splitting for Hydrothermal Scheduling , 2007, 2007 IEEE Power Engineering Society General Meeting.

[7]  A. David,et al.  Strategic bidding in competitive electricity markets: a literature survey , 2000, 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134).

[8]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[9]  John R. Birge,et al.  A stochastic model for the unit commitment problem , 1996 .

[10]  Rüdiger Schultz,et al.  Unit commitment in electricity pool markets , 2006, Math. Program..

[11]  Claudia A. Sagastizábal,et al.  Optimal scenario tree reduction for stochastic streamflows in power generation planning problems , 2010, Optim. Methods Softw..

[12]  A. Borghetti,et al.  An MILP Approach for Short-Term Hydro Scheduling and Unit Commitment With Head-Dependent Reservoir , 2008, IEEE Transactions on Power Systems.

[13]  G. Cohen,et al.  Decomposition/coordination algorithms in stochastic optimization , 1990 .

[14]  Claude Lemaréchal,et al.  Lagrangian Relaxation , 2000, Computational Combinatorial Optimization.

[15]  Daniel Ralph,et al.  Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices , 2007, Oper. Res..

[16]  Steven A. Gabriel,et al.  A Benders Decomposition Method for Solving Stochastic Complementarity Problems with an Application in Energy , 2010 .

[17]  Vincent Guigues Claudia Sagastiz,et al.  Robust management and pricing of LNG contracts with cancellation options , 2012 .

[18]  Asuman E. Ozdaglar,et al.  A geometric framework for nonconvex optimization duality using augmented lagrangian functions , 2008, J. Glob. Optim..

[19]  William Chung,et al.  Dantzig—Wolfe Decomposition of Variational Inequalities , 2005 .

[20]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[21]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[22]  A. Renaud,et al.  Daily generation scheduling optimization with transmission constraints: a new class of algorithms , 1992 .

[23]  L. S. Moulin,et al.  Transmission expansion planning with re-design , 2010 .

[24]  Steven A. Gabriel,et al.  Solving stochastic complementarity problems in energy market modeling using scenario reduction , 2009, Eur. J. Oper. Res..

[25]  Claudia A. Sagastizábal,et al.  Incremental-like bundle methods with application to energy planning , 2010, Comput. Optim. Appl..

[26]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[27]  Claude Lemaréchal,et al.  A geometric study of duality gaps, with applications , 2001, Math. Program..

[28]  Xiaoqi Yang,et al.  The Zero Duality Gap Property and Lower Semicontinuity of the Perturbation Function , 2002, Math. Oper. Res..

[29]  M. Ferris,et al.  Optimal Transmission Switching , 2008, IEEE Transactions on Power Systems.

[30]  F. Galiana,et al.  Coordination in markets with nonconvexities as a mathematical program with equilibrium constraints-Part I: a solution procedure , 2004, IEEE Transactions on Power Systems.

[31]  Jian Yao,et al.  Two-settlement electricity markets with price caps and Cournot generation firms , 2007, Eur. J. Oper. Res..

[32]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[33]  W. Römisch,et al.  Stability and Scenario Trees for Multistage Stochastic Programs , 2010 .

[34]  S. Sen Algorithms for Stochastic Mixed-Integer Programming Models , 2005 .

[35]  René Henrion,et al.  Chance Constrained Programming and Its Applications to Energy Management , 2011 .

[36]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[37]  Warrren B Powell,et al.  Convergent Cutting-Plane and Partial-Sampling Algorithm for Multistage Stochastic Linear Programs with Recourse , 1999 .

[38]  Claudia Sagastizábal,et al.  Optimization of real asset portfolio using a coherent risk measure: application to oil and energy industries , 2011 .

[39]  K. Kiwiel,et al.  Power management in a hydro-thermal system under uncertainty by Lagrangian relaxation , 2002 .

[40]  Luiz Diniz A Comparative Study of two Forward Dynamic Programming Techniques for solving Local Thermal Unit Commitment Problems , 2008 .

[41]  W. Römisch,et al.  A Two-Stage Planning Model for Power Scheduling in a Hydro-Thermal System Under Uncertainty , 2002 .

[42]  Andreas Ehrenmann,et al.  A Comparison of Electricity Market Designs in Networks , 2003, Oper. Res..

[43]  Ross Baldick,et al.  Design of Efficient Generation Markets , 2005, Proceedings of the IEEE.

[44]  Ankur A. Kulkarni,et al.  On the variational equilibrium as a refinement of the generalized Nash equilibrium , 2012, Autom..

[45]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[46]  D. Ralph,et al.  EPECs as models for electricity markets , 2006, 2006 IEEE PES Power Systems Conference and Exposition.

[47]  Andrzej Ruszczynski,et al.  On Convergence of an Augmented Lagrangian Decomposition Method for Sparse Convex Optimization , 1995, Math. Oper. Res..

[48]  Werner Römisch,et al.  Unit commitment in power generation – a basic model and some extensions , 2000, Ann. Oper. Res..

[49]  S. Wallace,et al.  Stochastic Programming Models in Energy , 2003 .

[50]  Krzysztof C. Kiwiel,et al.  A Proximal Bundle Method with Approximate Subgradient Linearizations , 2006, SIAM J. Optim..

[51]  Claude Lemaréchal,et al.  Bundle Methods in Stochastic Optimal Power Management: A Disaggregated Approach Using Preconditioners , 2001, Comput. Optim. Appl..

[52]  Michael C. Ferris,et al.  Interfaces to PATH 3.0: Design, Implementation and Usage , 1999, Comput. Optim. Appl..

[53]  Claudia A. Sagastizábal,et al.  The value of rolling-horizon policies for risk-averse hydro-thermal planning , 2012, Eur. J. Oper. Res..

[54]  Claudia A. Sagastizábal,et al.  Level bundle methods for oracles with on-demand accuracy , 2014, Optim. Methods Softw..

[55]  C. Lemaréchal,et al.  Bundle methods applied to the unit-commitment problem , 1996 .

[56]  Antonio Frangioni,et al.  A stabilized structured Dantzig–Wolfe decomposition method , 2012, Mathematical Programming.

[57]  Claude Lemaréchal,et al.  On a primal-proximal heuristic in discrete optimization , 2005, Math. Program..

[58]  J. Pang,et al.  Strategic gaming analysis for electric power systems: an MPEC approach , 2000 .

[59]  S. Granville,et al.  Nash equilibrium in strategic bidding: a binary expansion approach , 2006, IEEE Transactions on Power Systems.

[60]  A. Conejo,et al.  Decision making under uncertainty in electricity markets , 2010, 2006 IEEE Power Engineering Society General Meeting.

[61]  A.C.G. Melo,et al.  The Brazilian case , 1999, IEEE Power Engineering Review.

[62]  Claude Lemaréchal,et al.  A primal-proximal heuristic applied to the French Unit-commitment problem , 2005, Math. Program..

[63]  J. Pang,et al.  Oligopolistic Competition in Power Networks: A Conjectured Supply Function Approach , 2002, IEEE Power Engineering Review.

[64]  Golbon Zakeri,et al.  Inexact Cuts in Benders Decomposition , 1999, SIAM J. Optim..

[65]  Lihua Yu,et al.  Asset price modeling: decision aids for scheduling and hedging (DASH) in deregulated electricity markets: a stochastic programming approach to power portfolio optimization , 2002, WSC '02.

[66]  Andrew B. Philpott,et al.  On the convergence of stochastic dual dynamic programming and related methods , 2008, Oper. Res. Lett..

[67]  Prashant G. Mehta,et al.  Nash Equilibrium Problems With Scaled Congestion Costs and Shared Constraints , 2011, IEEE Transactions on Automatic Control.

[68]  Stefan Feltenmark,et al.  Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..

[69]  Gautam Mitra,et al.  Processing second-order stochastic dominance models using cutting-plane representations , 2011, Math. Program..

[70]  Claudia A. Sagastizábal,et al.  Bundle Relaxation and Primal Recovery in Unit Commitment Problems. The Brazilian Case , 2003, Ann. Oper. Res..

[71]  M. Shahidehpour,et al.  Transmission Switching in Expansion Planning , 2010, IEEE Transactions on Power Systems.

[72]  René Henrion,et al.  On joint probabilistic constraints with Gaussian coefficient matrix , 2011, Oper. Res. Lett..

[73]  Fredi Tröltzsch,et al.  Discrete concepts versus error analysis in PDE‐constrained optimization , 2010 .

[74]  D. Bertsekas Convexification procedures and decomposition methods for nonconvex optimization problems , 1979 .

[75]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[76]  Alejandro Jofré,et al.  Monopolistic competition in electricity networks with resistance losses , 2010 .

[77]  Csaba I. Fábián,et al.  Solving two-stage stochastic programming problems with level decomposition , 2007, Comput. Manag. Sci..

[78]  John R. Birge,et al.  The Abridged Nested Decomposition Method for Multistage Stochastic Linear Programs with Relatively Complete Recourse , 2006, Algorithmic Oper. Res..

[79]  C Greengard,et al.  Decision Making Under Uncertainty: Energy and Power (The IMA Volumes in Mathematics and its Applications) , 2002 .

[80]  Laurence A. Wolsey,et al.  Two “well-known” properties of subgradient optimization , 2009, Math. Program..

[81]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[82]  Claudia A. Sagastizábal,et al.  Introducing environmental constraints in generation expansion problems , 2007, Numer. Linear Algebra Appl..

[83]  E.L. da Silva,et al.  Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming , 2006, IEEE Transactions on Power Systems.

[84]  Uday V. Shanbhag,et al.  Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis , 2013, Optim. Methods Softw..

[85]  Werner Römisch,et al.  Sampling-Based Decomposition Methods for Multistage Stochastic Programs Based on Extended Polyhedral Risk Measures , 2012, SIAM J. Optim..

[86]  Claudio Gentile,et al.  Solving Nonlinear Single-Unit Commitment Problems with Ramping Constraints , 2006, Oper. Res..

[87]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[88]  Paul Tseng,et al.  Partial Proximal Minimization Algorithms for Convex Pprogramming , 1994, SIAM J. Optim..

[89]  Benjamin F. Hobbs,et al.  Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures , 2004, Math. Program..

[90]  Werner Römisch,et al.  Stochastic Lagrangian Relaxation Applied to Power Scheduling in a Hydro-Thermal System under Uncertainty , 2000, Ann. Oper. Res..

[91]  Diana S. Yakowitz A regularized stochastic decomposition algorithm for two-stage stochastic linear programs , 1994, Comput. Optim. Appl..

[92]  Jeremy F. Shapiro,et al.  Optimizing Resource Acquisition Decisions by Stochastic Programming , 1988 .

[93]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[94]  René Henrion,et al.  On probabilistic constraints induced by rectangular sets and multivariate normal distributions , 2010, Math. Methods Oper. Res..

[95]  William Chung,et al.  Subproblem Approximation in Dantzig-Wolfe Decomposition of Variational Inequality Models with an Application to a Multicommodity Economic Equilibrium Model , 2010, Oper. Res..

[96]  M. V. F. Pereira,et al.  Multi-stage stochastic optimization applied to energy planning , 1991, Math. Program..

[97]  Stanislav Uryasev,et al.  Conditional Value-at-Risk for General Loss Distributions , 2002 .

[98]  Rüdiger Schultz,et al.  A Stochastic Integer Programming Model for Incorporating Day-Ahead Trading of Electricity into Hydro-Thermal Unit Commitment , 2005 .

[99]  J. Henry,et al.  System Modelling and Optimization: Proceedings of the 16th IFIP-TC7 Conference, Compiègne, France, July 5-9, 1993 , 1994, System Modelling and Optimization.

[100]  Julia L. Higle,et al.  Finite master programs in regularized stochastic decomposition , 1994, Math. Program..

[101]  Claudia A. Sagastizábal,et al.  A class of Dantzig–Wolfe type decomposition methods for variational inequality problems , 2014, Math. Program..

[102]  Claudia A. Sagastizábal,et al.  Exploiting the structure of autoregressive processes in chance-constrained multistage stochastic linear programs , 2012, Oper. Res. Lett..

[103]  J. Frédéric Bonnans,et al.  Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .

[104]  Jérôme Malick,et al.  The short-term electricity production management problem at EDF , 2010 .

[105]  Yves Smeers,et al.  Capacity Expansion in Non-Regulated Electricity Markets , 2006, Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06).

[106]  P. Carpentier,et al.  Stochastic optimization of unit commitment: a new decomposition framework , 1996 .

[107]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..