Varying Coefficient Regression Models: A Review and New Developments

type="main" xml:id="insr12029-abs-0001"> Varying coefficient regression models are known to be very useful tools for analysing the relation between a response and a group of covariates. Their structure and interpretability are similar to those for the traditional linear regression model, but they are more flexible because of the infinite dimensionality of the corresponding parameter spaces. The aims of this paper are to give an overview on the existing methodological and theoretical developments for varying coefficient models and to discuss their extensions with some new developments. The new developments enable us to use different amount of smoothing for estimating different component functions in the models. They are for a flexible form of varying coefficient models that requires smoothing across different covariates' spaces and are based on the smooth backfitting technique that is admitted as a powerful technique for fitting structural regression models and is also known to free us from the curse of dimensionality.

[1]  Enno Mammen,et al.  Bandwidth selection for smooth backfitting in additive models , 2005, math/0507425.

[2]  B. Park,et al.  TESTING IN NONPARAMETRIC VARYING COEFFICIENT ADDITIVE MODELS , 2011 .

[3]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[4]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[5]  Javier Roca-Pardiñas,et al.  Feasible estimation in generalized structured models , 2010, Stat. Comput..

[6]  E. Hawe,et al.  Family History is a Coronary Heart Disease Risk Factor in the Second Northwick Park Heart Study , 2003, Annals of human genetics.

[7]  Hua Liang,et al.  Polynomial Spline Estimation for a Generalized Additive Coefficient Model , 2010, Scandinavian journal of statistics, theory and applications.

[8]  Haipeng Shen,et al.  Functional Coefficient Regression Models for Non‐linear Time Series: A Polynomial Spline Approach , 2004 .

[9]  Li Ping Yang,et al.  Nonparametric smoothing estimates of time-varying coefficient models with longitudinal data , 1998 .

[10]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[11]  Lijian Yang,et al.  Estimation of semi-parametric additive coefficient model , 2006 .

[12]  Qi Li,et al.  Efficient estimation of a semiparametric partially linear varying coefficient model , 2005, math/0504510.

[13]  W. Härdle,et al.  Estimation of additive regression models with known links , 1996 .

[14]  Jianhui Zhou,et al.  Quantile regression in partially linear varying coefficient models , 2009, 0911.3501.

[15]  Enno Mammen,et al.  Projection-type estimation for varying coefficient regression models , 2012, 1203.0403.

[16]  Runze Li,et al.  Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.

[17]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[18]  Enno Mammen,et al.  Flexible generalized varying coefficient regression models , 2012, 1210.4711.

[19]  Jianqing Fan,et al.  Simultaneous Confidence Bands and Hypothesis Testing in Varying‐coefficient Models , 2000 .

[20]  Jinhong You,et al.  Estimation of a semiparametric varying-coefficient partially linear errors-in-variables model , 2006 .

[21]  Jinde Wang,et al.  L 1-estimation for varying coefficient models , 2005 .

[22]  Xiaotong Shen,et al.  Local asymptotics for regression splines and confidence regions , 1998 .

[23]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[24]  Wenyang Zhang,et al.  Variable Bandwidth Selection in Varying-Coefficient Models , 2000 .

[25]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[26]  Clifford Lam,et al.  PROFILE-KERNEL LIKELIHOOD INFERENCE WITH DIVERGING NUMBER OF PARAMETERS. , 2008, Annals of statistics.

[27]  Mi-Ok Kim,et al.  Quantile regression with varying coefficients , 2007, 0708.0471.

[28]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[29]  P. Talmud How to identify gene–environment interactions in a multifactorial disease: CHD as an example , 2004, Proceedings of the Nutrition Society.

[30]  Wolfgang Härdle,et al.  Estimation and Testing for Varying Coefficients in Additive Models With Marginal Integration , 2005 .

[31]  Chin-Tsang Chiang,et al.  KERNEL SMOOTHING ON VARYING COEFFICIENT MODELS WITH LONGITUDINAL DEPENDENT VARIABLE , 2000 .

[32]  Gerhard Tutz,et al.  On model diagnostics using varying coefficient models , 1999 .

[33]  Enno Mammen,et al.  The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions , 1999 .

[34]  Wenyang Zhang,et al.  Simultaneous confidence band and hypothesis test in generalised varying-coefficient models , 2010, J. Multivar. Anal..

[35]  Averaged estimation of functional-coefficient regression models with different smoothing variables , 2007 .

[36]  W. Härdle,et al.  How Far are Automatically Chosen Regression Smoothing Parameters from their Optimum , 1988 .

[37]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[38]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[39]  Jianqing Fan,et al.  Local polynomial kernel regression for generalized linear models and quasi-likelihood functions , 1995 .

[40]  Yong Zhou,et al.  Corrected local polynomial estimation in varying‐coefficient models with measurement errors , 2006 .

[41]  J. Rossouw,et al.  Coronary risk factor screening in three rural communities. The CORIS baseline study. , 1983, South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde.

[42]  Hongzhe Li,et al.  A Sparse Structured Shrinkage Estimator for Nonparametric Varying-Coefficient Model With an Application in Genomics , 2012, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[43]  Riquan Zhang,et al.  Generalized likelihood ratio test for varying-coefficient models with different smoothing variables , 2007, Comput. Stat. Data Anal..

[44]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[45]  Jianqing Fan,et al.  Functional-Coefficient Regression Models for Nonlinear Time Series , 2000 .

[46]  Heng Lian,et al.  Semi-varying coefficient models with a diverging number of components , 2011, J. Multivar. Anal..

[47]  Tao Hu,et al.  ADAPTIVE SEMI-VARYING COEFFICIENT MODEL SELECTION , 2012 .

[48]  Enno Mammen,et al.  Smooth backfitting in generalized additive models , 2008, 0803.1922.

[49]  A. Ahlbom,et al.  How to evaluate interaction between causes: a review of practices in cardiovascular epidemiology , 1996, Journal of internal medicine.

[50]  Jianqing Fan,et al.  Statistical Methods with Varying Coefficient Models. , 2008, Statistics and its interface.

[51]  Göran Kauermann,et al.  BOOTSTRAP CONFIDENCE INTERVALS FOR LOCAL LIKELIHOOD, LOCAL ESTIMATING EQUATIONS AND VARYING COEFFICIENT MODELS , 2000 .

[52]  Hua Liang,et al.  Statistical inference for semiparametric varying-coefficient partially linear models with error-prone linear covariates , 2009, 0903.0499.

[53]  Trevor Hastie,et al.  Non‐Parametric Logistic and Proportional Odds Regression , 1987 .

[54]  Toshio Honda,et al.  Quantile regression in varying coefficient models , 2004 .

[55]  J. Aitchison,et al.  Multivariate binary discrimination by the kernel method , 1976 .

[56]  Zongwu Cai,et al.  Two-Step Likelihood Estimation Procedure for Varying-Coefficient Models , 2002 .

[57]  Jianhua Z. Huang,et al.  Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.

[58]  Xiaohong Chen Chapter 76 Large Sample Sieve Estimation of Semi-Nonparametric Models , 2007 .

[59]  Jianqing Fan,et al.  Profile likelihood inferences on semiparametric varying-coefficient partially linear models , 2005 .

[60]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[61]  Gerhard Tutz,et al.  Local likelihood estimation in varying-coefficient models including additive bias correction , 2000 .

[62]  Hohsuk Noh,et al.  SPARSE VARYING COEFFICIENT MODELS FOR LONGITUDINAL DATA , 2010 .

[63]  Runze Li,et al.  Local Rank Inference for Varying Coefficient Models , 2009, Journal of the American Statistical Association.

[64]  Yingcun Xia,et al.  Shrinkage Estimation of the Varying Coefficient Model , 2008 .

[65]  E. Mammen,et al.  Backfitting and Smooth Backfitting in Varying Coefficient Quantile Regression , 2014 .

[66]  Jianhua Z. Huang Local asymptotics for polynomial spline regression , 2003 .

[67]  Sara van de Geer,et al.  Penalized quasi-likelihood estimation in partial linear models , 1997 .

[68]  Riquan Zhang,et al.  Estimation on Varying-Coefficient Partially Linear Model With Different Smoothing Variables , 2012 .

[69]  Kai F. Yu,et al.  Nonparametric varying-coefficient models for the analysis of longitudinal data , 2002 .

[70]  Peter Buhlmann,et al.  Smoothing ℓ1-penalized estimators for high-dimensional time-course data , 2007, 0712.1654.

[71]  E. Mammen,et al.  Backfitting and smooth backfitting for additive quantile models , 2010, 1011.2592.

[72]  Ruey S. Tsay,et al.  Functional-Coefficient Autoregressive Models , 1993 .

[73]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[74]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .