Blockade of β1- and desensitization of β2-adrenoceptors reduce isoprenaline-induced cardiac fibrosis

[1]  S. Ball,et al.  Chronic beta2-adrenergic receptor stimulation increases proliferation of human cardiac fibroblasts via an autocrine mechanism. , 2003, Cardiovascular research.

[2]  M. Hamon,et al.  Toxic cardiac effects of catecholamines: role of β-adrenoceptor downregulation , 2002 .

[3]  D. Bonnefont-Rousselot,et al.  Catecholamine effects on cardiac remodelling, oxidative stress and fibrosis in experimental heart failure , 2002, Redox report : communications in free radical research.

[4]  P. Poole‐Wilson,et al.  Rationale and design of the carvedilol or metoprolol European trial in patients with chronic heart failure: COMET , 2002, European journal of heart failure.

[5]  G. Booz,et al.  Regulation of angiotensinogen gene expression and protein in neonatal rat cardiac fibroblasts by glucocorticoid and β-adrenergic stimulation , 2000, Basic Research in Cardiology.

[6]  Å. Gustafsson,et al.  beta-adrenergic stimulation of rat cardiac fibroblasts enhances induction of nitric-oxide synthase by interleukin-1beta via message stabilization. , 2000, Molecular pharmacology.

[7]  H. Zimmer,et al.  Comitogenic effect of catecholamines on rat cardiac fibroblasts in culture. , 2000, Cardiovascular research.

[8]  G. Dorn,et al.  Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level. , 2000, Circulation.

[9]  A. Dart,et al.  beta(2)-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis. , 2000, Circulation.

[10]  Fach,et al.  Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF) , 1999, The Lancet.

[11]  C. Delcayre,et al.  Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. , 1999, Hypertension.

[12]  CIBIS-II Investigators and Committees The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial , 1999, The Lancet.

[13]  M. Packer,et al.  Clinical effects of beta-adrenergic blockade in chronic heart failure: a meta-analysis of double-blind, placebo-controlled, randomized trials. , 1998, Circulation.

[14]  P. Lauriola,et al.  Avoidable deaths from vehicle accidents in Modena, Italy , 1998, The Lancet.

[15]  B. Andersson 3-year follow-up of patients randomised in the metoprolol in dilated cardiomyopathy trial , 1998, The Lancet.

[16]  M. Hamon,et al.  [3H]Alnespirone: a novel specific radioligand of 5-HT1A receptors in the rat brain. , 1997, European journal of pharmacology.

[17]  G. Rainaldi,et al.  Combined effect of 3-aminobenzamide and N-acetylcysteine on HIV replication in chronically infected U937 cells. , 1997, Redox report : communications in free radical research.

[18]  S. Fisher,et al.  Norepinephrine and ANG II stimulate secretion of TGF-beta by neonatal rat cardiac fibroblasts in vitro. , 1995, The American journal of physiology.

[19]  S. Green,et al.  A proline-rich region of the third intracellular loop imparts phenotypic beta 1-versus beta 2-adrenergic receptor coupling and sequestration. , 1994, The Journal of biological chemistry.

[20]  L. Birnbaumer,et al.  Efficacy of beta 1-adrenergic receptors is lower than that of beta 2-adrenergic receptors. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. Long,et al.  Beta-adrenergic stimulation of cardiac non-myocytes augments the growth-promoting activity of non-myocyte conditioned medium. , 1993, Journal of molecular and cellular cardiology.

[22]  H. Mori,et al.  Increased responsiveness of left ventricular apical myocardium to adrenergic stimuli. , 1993, Cardiovascular research.

[23]  S. Green,et al.  Beta 1- and beta 2-adrenergic receptors display subtype-selective coupling to Gs. , 1992, Molecular pharmacology.

[24]  M. Bouvier,et al.  Distinct regulation of beta 1- and beta 2-adrenergic receptors in Chinese hamster fibroblasts. , 1992, Molecular pharmacology.

[25]  M. Roth,et al.  Characteristics of the tyrosine recognition signal for internalization of transmembrane surface glycoproteins , 1990, The Journal of cell biology.

[26]  M. Caron,et al.  Involvement of tyrosine residues located in the carboxyl tail of the human beta 2-adrenergic receptor in agonist-induced down-regulation of the receptor. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Saffitz,et al.  Distribution of beta-adrenergic receptors in failing human myocardium. Implications for mechanisms of down-regulation. , 1989, Circulation.

[28]  J. Port,et al.  Beta 1- and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. , 1989, Molecular pharmacology.

[29]  P. Molinoff,et al.  Turnover of beta 1- and beta 2-adrenergic receptors after down-regulation or irreversible blockade. , 1986, Molecular pharmacology.

[30]  M. Rosen,et al.  Subclassification of β‐Adrenergic Receptors in Cultured Rat Cardiac Myoblasts and Fibroblasts , 1980, Circulation research.

[31]  E. Varnauskas,et al.  Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. , 1975, British heart journal.

[32]  C. Scorer,et al.  Albuterol-induced downregulation of Gsα accounts for pulmonary β2-adrenoceptor desensitization in vivo , 2000 .