Large Scale Computational Modelling of Cellular Biosystems

Systems Research Institute Polish Academy of Sciences

[1]  Barbara Chapman,et al.  Using OpenMP - portable shared memory parallel programming , 2007, Scientific and engineering computation.

[2]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[3]  Michael Mascagni,et al.  SPRNG: A Scalable Library for Pseudorandom Number Generation , 1999, PP.

[4]  M. Chaplain,et al.  Two-dimensional models of tumour angiogenesis and anti-angiogenesis strategies. , 1997, IMA journal of mathematics applied in medicine and biology.

[5]  Michael S. Warren,et al.  A Fast Tree Code for Many-Body Problems , 1999 .

[6]  James Demmel,et al.  Minimizing communication in sparse matrix solvers , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[7]  K. Rejniak A single-cell approach in modeling the dynamics of tumor microregions. , 2005, Mathematical biosciences and engineering : MBE.

[8]  A. Anderson,et al.  A Hybrid Multiscale Model of Solid Tumour Growth and Invasion: Evolution and the Microenvironment , 2007 .

[9]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[10]  S. McDougall,et al.  Mathematical modelling of flow through vascular networks: Implications for tumour-induced angiogenesis and chemotherapy strategies , 2002, Bulletin of mathematical biology.

[11]  Michele Weiland,et al.  Chapel , Fortress and X10 : novel languages for HPC , 2007 .

[12]  James Demmel,et al.  Communication Avoiding Gaussian elimination , 2008, 2008 SC - International Conference for High Performance Computing, Networking, Storage and Analysis.

[13]  Zuzanna Szymańska,et al.  Mathematical modeling of heat shock protein synthesis in response to temperature change. , 2009, Journal of theoretical biology.

[14]  Allen D. Malony,et al.  The Tau Parallel Performance System , 2006, Int. J. High Perform. Comput. Appl..

[15]  Maciej Cytowski,et al.  Astronomical Period Searching on the Cell Broadband Engine , 2009, PPAM.

[16]  H M Byrne,et al.  Mathematical models for tumour angiogenesis: numerical simulations and nonlinear wave solutions. , 1995, Bulletin of mathematical biology.

[17]  Alexander R. A. Anderson,et al.  Mathematical modelling of cancer cell invasion of tissue , 2008, Math. Comput. Model..

[18]  J. Xu OpenCL – The Open Standard for Parallel Programming of Heterogeneous Systems , 2009 .

[19]  H M Byrne,et al.  Growth of nonnecrotic tumors in the presence and absence of inhibitors. , 1995, Mathematical biosciences.

[20]  Andreas Deutsch,et al.  Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion , 2010, Comput. Math. Appl..

[21]  M. Chaplain,et al.  Free boundary value problems associated with the growth and development of multicellular spheroids , 1997, European Journal of Applied Mathematics.

[22]  Helen M Byrne,et al.  A mechanical model of tumor encapsulation and transcapsular spread. , 2002, Mathematical biosciences.

[23]  H. Frieboes,et al.  Nonlinear modelling of cancer: bridging the gap between cells and tumours , 2010, Nonlinearity.

[24]  Robert D. Falgout,et al.  Scaling Hypre's Multigrid Solvers to 100, 000 Cores , 2011, High-Performance Scientific Computing.

[25]  H. Greenspan Models for the Growth of a Solid Tumor by Diffusion , 1972 .

[26]  John S. Lowengrub,et al.  A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth , 2008, J. Sci. Comput..

[27]  N. Britton,et al.  Stochastic simulation of benign avascular tumour growth using the Potts model , 1999 .

[28]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[29]  M. Loeffler,et al.  Modeling the effect of deregulated proliferation and apoptosis on the growth dynamics of epithelial cell populations in vitro. , 2005, Biophysical journal.

[30]  J. Folkman,et al.  SELF-REGULATION OF GROWTH IN THREE DIMENSIONS , 1973, The Journal of experimental medicine.

[31]  J. King,et al.  Mathematical modelling of avascular-tumour growth. II: Modelling growth saturation. , 1999, IMA journal of mathematics applied in medicine and biology.

[32]  H. Othmer,et al.  A HYBRID MODEL FOR TUMOR SPHEROID GROWTH IN VITRO I: THEORETICAL DEVELOPMENT AND EARLY RESULTS , 2007 .

[33]  Dariusz Plewczynski,et al.  3D-Hit: fast structural comparison of proteins on multicore architectures , 2014, Optim. Lett..

[34]  Vivek Sarkar,et al.  Software challenges in extreme scale systems , 2009 .

[35]  J. Davenport Editor , 1960 .

[36]  John Shalf,et al.  The International Exascale Software Project roadmap , 2011, Int. J. High Perform. Comput. Appl..

[37]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[38]  R. A. ANDERSONa,et al.  Mathematical Modelling of Tumour Invasion and Metastasis , 2022 .

[39]  A. Anderson,et al.  A Computational Study of the Development of Epithelial Acini: II. Necessary Conditions for Structure and Lumen Stability , 2008, Bulletin of mathematical biology.

[40]  C. S. Chen,et al.  Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Chaplain,et al.  Mathematical modelling of cancer cell invasion of tissue , 2005, Math. Comput. Model..

[42]  Mark A J Chaplain,et al.  Computational modeling of single-cell migration: the leading role of extracellular matrix fibers. , 2012, Biophysical journal.

[43]  S. McDougall,et al.  Multiscale modelling and nonlinear simulation of vascular tumour growth , 2009, Journal of mathematical biology.

[44]  James Demmel,et al.  Communication-optimal Parallel and Sequential QR and LU Factorizations , 2008, SIAM J. Sci. Comput..

[45]  ski,et al.  Performance analysis of parallel applications on modern multithreaded processor architectures , 2013 .

[46]  J. CARRIERt,et al.  A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS * , 2022 .

[47]  K. Rejniak,et al.  Computational and Mathematical Methods in Medicine a Single Cell-based Model of the Ductal Tumour Microarchitecture a Single Cell-based Model of the Ductal Tumour Microarchitecture , 2022 .

[48]  Ignacio Ramis-Conde,et al.  Multi-scale modelling of cancer cell intravasation: the role of cadherins in metastasis , 2009, Physical biology.

[49]  P. May,et al.  Cell cycle control and cancer. , 2000, Pathologie-biologie.

[50]  John Dubinski,et al.  GOTPM: A Parallel Hybrid Particle-Mesh Treecode , 2004 .

[51]  Gerard V. Kopcsay,et al.  Packaging the IBM Blue Gene/Q supercomputer , 2013, IBM J. Res. Dev..

[52]  Yuefan Deng,et al.  An efficient parallel implementation of the smooth particle mesh Ewald method for molecular dynamics simulations , 2007, Comput. Phys. Commun..

[53]  H M Byrne,et al.  Growth of necrotic tumors in the presence and absence of inhibitors. , 1996, Mathematical biosciences.

[54]  Maciej Cytowski,et al.  Large-Scale Parallel Simulations of 3D Cell Colony Dynamics , 2014, Computing in Science & Engineering.

[55]  T. Jackson,et al.  Incorporating spatial dependence into a multicellular tumor spheroid growth model , 2005 .

[56]  Maciej Cytowski,et al.  Towards Autotuning of OpenMP Applications on Multicore Architectures , 2014, ArXiv.

[57]  Maciej Cytowski,et al.  Analysis of Gravitational Wave Signals on Heterogeneous Architectures , 2010, PARA.

[58]  M. Dewhirst,et al.  Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. , 1997, International journal of radiation oncology, biology, physics.

[59]  D. Balding,et al.  A mathematical model of tumour-induced capillary growth. , 1985, Journal of theoretical biology.

[60]  H. Greenspan On the growth and stability of cell cultures and solid tumors. , 1976, Journal of theoretical biology.

[61]  M. Chaplain,et al.  Continuous and discrete mathematical models of tumor-induced angiogenesis , 1998, Bulletin of mathematical biology.

[62]  Anna Gambin,et al.  Modelling the efficacy of hyperthermia treatment , 2012, Journal of The Royal Society Interface.

[63]  Vipin Kumar,et al.  Scalable parallel formulations of the barnes-hut method for n-body simulations , 1994, Supercomputing '94.

[64]  S Torquato,et al.  Cellular automaton of idealized brain tumor growth dynamics. , 2000, Bio Systems.

[65]  K. Rejniak An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. , 2007, Journal of theoretical biology.

[66]  Dirk Drasdo,et al.  On Selected Individual-based Approaches to the Dynamics in Multicellular Systems , 2003 .

[67]  E. T. Gawlinski,et al.  Acid-mediated tumor invasion: a multidisciplinary study. , 2006, Cancer research.

[68]  A. Anderson,et al.  Front Instabilities and Invasiveness of Simulated Avascular Tumors , 2009, Bulletin of mathematical biology.

[69]  Martin Hopkins,et al.  Synergistic Processing in Cell's Multicore Architecture , 2006, IEEE Micro.

[70]  Glazier,et al.  Simulation of the differential adhesion driven rearrangement of biological cells. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  Torsten Hoefler,et al.  Mpi on Millions of Cores * , 2022 .

[72]  L. Preziosi,et al.  ON THE CLOSURE OF MASS BALANCE MODELS FOR TUMOR GROWTH , 2002 .

[73]  B Ribba,et al.  A multiscale mathematical model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents. , 2006, Journal of theoretical biology.

[74]  E. T. Gawlinski,et al.  A Cellular Automaton Model of Early Tumor Growth and Invasion: The Effects of Native Tissue Vascularity and Increased Anaerobic Tumor Metabolism , 2001 .

[75]  Maciej Cytowski,et al.  Increasing the Efficiency of the DaCS Programming Model for Heterogeneous Systems , 2011, PPAM.

[76]  A. Anderson,et al.  A Computational Study of the Development of Epithelial Acini: I. Sufficient Conditions for the Formation of a Hollow Structure , 2008, Bulletin of mathematical biology.

[77]  A. Anderson,et al.  Stability analysis of a hybrid cellular automaton model of cell colony growth. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  F. MacKintosh,et al.  Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. , 2000, Physical review letters.

[79]  D. Drasdo,et al.  A single-cell-based model of tumor growth in vitro: monolayers and spheroids , 2005, Physical biology.

[80]  Andreas Deutsch,et al.  Lattice-Gas Cellular Automaton Modeling of Emergent Behavior in Interacting Cell Populations , 2010, Simulating Complex Systems by Cellular Automata.

[81]  Maciej Cytowski,et al.  Nautilus - A Testbed for Green Scientific Computing , 2009, ERCIM News.

[82]  Maciej Cytowski,et al.  A 2-D Large-scale Individual-based model of solid tumour growth , 2013 .

[83]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[84]  K. Edvardsen,et al.  Role of extracellular matrix in tumor invasion: migration of glioma cells along fibronectin-positive mesenchymal cell processes. , 1998, Neurosurgery.

[85]  S. McDougall,et al.  Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. , 2006, Journal of theoretical biology.

[86]  A. Anderson,et al.  A hybrid cellular automaton model of clonal evolution in cancer: the emergence of the glycolytic phenotype. , 2008, Journal of theoretical biology.

[87]  A. Anderson,et al.  A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. , 2005, Mathematical medicine and biology : a journal of the IMA.