Quantized Compressive K-Means

The recent framework of compressive statistical learning proposes to design tractable learning algorithms that use only a heavily compressed representation—or sketch—of massive datasets. Compressive K-Means (CKM) is such a method: It aims at estimating the centroids of data clusters from pooled, nonlinear, and random signatures of the learning examples. While this approach significantly reduces computational time on very large datasets, its digital implementation wastes acquisition resources because the learning examples are compressed only after the sensing stage. The present work generalizes the CKM sketching procedure to a large class of periodic nonlinearities including hardware-friendly implementations that compressively acquire entire datasets. This idea is exemplified in a quantized CKM procedure, a variant of CKM that leverages 1-bit universal quantization (i.e., retaining the least significant bit of a standard uniform quantizer) as the periodic sketch nonlinearity. Trading for this resource-efficient signature (standard in most acquisition schemes) has almost no impact on the clustering performance, as illustrated by numerical experiments.

[1]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[2]  Christos Boutsidis,et al.  Random Projections for $k$-means Clustering , 2010, NIPS.

[3]  Anil K. Jain Data clustering: 50 years beyond K-means , 2008, Pattern Recognit. Lett..

[4]  Petros Boufounos,et al.  Efficient Coding of Signal Distances Using Universal Quantized Embeddings , 2013, 2013 Data Compression Conference.

[5]  Rémi Gribonval,et al.  Large-Scale High-Dimensional Clustering with Fast Sketching , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[7]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[8]  Christos Boutsidis,et al.  Unsupervised Feature Selection for the $k$-means Clustering Problem , 2009, NIPS.

[9]  Jaewook Kim,et al.  A Time-Based Bandpass ADC Using Time-Interleaved Voltage-Controlled Oscillators , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Rémi Gribonval,et al.  Compressive Statistical Learning with Random Feature Moments , 2017, Mathematical Statistics and Learning.

[11]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[12]  Rayan Saab,et al.  Simple Classification using Binary Data , 2017, J. Mach. Learn. Res..

[13]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[14]  Rémi Gribonval,et al.  Compressive K-means , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[15]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[16]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[17]  Bernhard Schölkopf,et al.  A Kernel Method for the Two-Sample-Problem , 2006, NIPS.

[18]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[19]  Christian Sohler,et al.  A fast k-means implementation using coresets , 2006, SCG '06.

[20]  Inderjit S. Dhillon,et al.  Orthogonal Matching Pursuit with Replacement , 2011, NIPS.

[21]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[22]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[23]  Patrick Pérez,et al.  Sketching for Large-Scale Learning of Mixture Models. (Apprentissage de modèles de mélange à large échelle par Sketching) , 2017 .

[24]  Christopher R. Taber,et al.  Generalized Method of Moments , 2020, Time Series Analysis.

[25]  Elsa Dupraz,et al.  K-Means Algorithm Over Compressed Binary Data , 2017, 2018 Data Compression Conference.

[26]  Pierre Hansen,et al.  NP-hardness of Euclidean sum-of-squares clustering , 2008, Machine Learning.

[27]  James Bailey,et al.  Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance , 2010, J. Mach. Learn. Res..

[28]  Hassan Mansour,et al.  Representation and Coding of Signal Geometry , 2015, ArXiv.

[29]  Douglas Steinley,et al.  K-means clustering: a half-century synthesis. , 2006, The British journal of mathematical and statistical psychology.

[30]  Florent Krzakala,et al.  Random projections through multiple optical scattering: Approximating Kernels at the speed of light , 2015, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[31]  Bharath K. Sriperumbudur Mixture density estimation via Hilbert space embedding of measures , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[32]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[33]  W. Rudin,et al.  Fourier Analysis on Groups. , 1965 .