Introduction to Nonsmooth Optimization
暂无分享,去创建一个
Adil M. Bagirov | Marko M. Mäkelä | Napsu Karmitsa | M. Mäkelä | A. Bagirov | N. Karmitsa | Napsu Karmitsa
[1] Adil M. Bagirov,et al. Comparing different nonsmooth minimization methods and software , 2012, Optim. Methods Softw..
[2] Tony F. Chan,et al. Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..
[3] Adrian Lewis,et al. The mathematics of eigenvalue optimization , 2003, Math. Program..
[4] J. Asaadi,et al. A computational comparison of some non-linear programs , 1973, Math. Program..
[5] Andreas Griewank,et al. On the unconstrained optimization of partially separable functions , 1982 .
[6] Jean-Baptiste Hiriart-Urruty. Approximating a Second-Order Directional Derivative for Nonsmooth Convex Functions , 1982 .
[7] Adil M. Bagirov,et al. Parallelization of the Discrete Gradient Method of Non-smooth Optimization and Its Applications , 2003, International Conference on Computational Science.
[8] อนิรุธ สืบสิงห์,et al. Data Mining Practical Machine Learning Tools and Techniques , 2014 .
[9] A. Bagirov,et al. A Global Optimization Approach to Classification , 2002 .
[10] Stefan Feltenmark,et al. Dual Applications of Proximal Bundle Methods, Including Lagrangian Relaxation of Nonconvex Problems , 1999, SIAM J. Optim..
[11] Tommi Kärkkäinen,et al. Semi-adaptive, convex optimisation methodology for image denoising , 2005 .
[12] A. Banerjee. Convex Analysis and Optimization , 2006 .
[13] S. Nobakhtian. Infine functions and nonsmooth multiobjective optimization problems , 2006, Comput. Math. Appl..
[14] Philippe L. Toint,et al. A Derivative-Free Algorithm for Sparse Unconstrained Optimization Problems , 2002 .
[15] A. Bagirov. Continuous Subdifferential Approximations and Their Applications , 2003 .
[16] Roberto Basili,et al. Learning to Classify Text Using Support Vector Machines: Methods, Theory, and Algorithms by Thorsten Joachims , 2003, Comput. Linguistics.
[17] Dirk Neumann,et al. A new Lamarckian genetic algorithm for flexible ligand‐receptor docking , 2010, J. Comput. Chem..
[18] Adil M. Bagirov,et al. A Method for Minimization of Quasidifferentiable Functions , 2002, Optim. Methods Softw..
[19] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[20] Gilbert Saporta,et al. Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..
[21] Kaisa Miettinen,et al. Optimal Control of Continuous Casting by Nondifferentiable Multiobjective Optimization , 1998, Comput. Optim. Appl..
[22] M. Levitt,et al. Structural similarity of DNA-binding domains of bacteriophage repressors and the globin core , 1993, Current Biology.
[23] Marjo S. Haarala. Large-scale nonsmooth optimization : variable metric bundle method with limited memory , 2004 .
[24] Yongbo Hu,et al. Comparison of Several Molecular Docking Programs: Pose Prediction and Virtual Screening Accuracy , 2009, J. Chem. Inf. Model..
[25] Rachel Kolodny,et al. Comprehensive evaluation of protein structure alignment methods: scoring by geometric measures. , 2005, Journal of molecular biology.
[26] J. E. Kelley,et al. The Cutting-Plane Method for Solving Convex Programs , 1960 .
[27] W. Zangwill. Non-Linear Programming Via Penalty Functions , 1967 .
[28] Frank E. Curtis,et al. An adaptive gradient sampling algorithm for non-smooth optimization , 2013, Optim. Methods Softw..
[29] Le Thi Hoai An,et al. Large-Scale Molecular Optimization from Distance Matrices by a D.C. Optimization Approach , 2003, SIAM J. Optim..
[30] Roderick Melnik,et al. Distance geometry algorithms in molecular modelling of polymer and composite systems , 2003 .
[31] J. Frédéric Bonnans,et al. A family of variable metric proximal methods , 1995, Math. Program..
[32] S. Schaible,et al. Generalized Monotone Maps , 2005 .
[33] P. Jain,et al. Generalized (F, ρ)-convexity and duality for non smooth multi-objective programs , 1994 .
[34] Xinmin Yang,et al. Three kinds of generalized convexity , 1995 .
[35] J. M. Martínez,et al. Trust-region superposition methods for protein alignment , 2008 .
[36] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[37] Refail Kasimbeyli,et al. A Nonlinear Cone Separation Theorem and Scalarization in Nonconvex Vector Optimization , 2009, SIAM J. Optim..
[38] Marc Teboulle,et al. A Unified Continuous Optimization Framework for Center-Based Clustering Methods , 2007, J. Mach. Learn. Res..
[39] V. F. Demʹi︠a︡nov,et al. Constructive nonsmooth analysis , 1995 .
[40] Jorge J. Moré,et al. Distance Geometry Optimization for Protein Structures , 1999, J. Glob. Optim..
[41] Franziska Wulf,et al. Minimization Methods For Non Differentiable Functions , 2016 .
[42] B. Jaumard,et al. Cluster Analysis and Mathematical Programming , 2003 .
[43] J. P. Crouzeix,et al. Continuity properties of the normal cone to the level sets of a quasiconvex function , 1990 .
[44] T. Pietrzykowski. An Exact Potential Method for Constrained Maxima , 1969 .
[45] A. A. Goldstein,et al. Newton's method for convex programming and Tchebycheff approximation , 1959, Numerische Mathematik.
[46] G. McLachlan. Discriminant Analysis and Statistical Pattern Recognition , 1992 .
[47] Adil M. Bagirov,et al. Subgradient and Bundle Methods for Nonsmooth Optimization , 2013 .
[48] Adrian S. Lewis,et al. A Robust Gradient Sampling Algorithm for Nonsmooth, Nonconvex Optimization , 2005, SIAM J. Optim..
[49] M. Wedel,et al. Consumer benefit segmentation using clusterwise linear regression , 1989 .
[50] Arkadi Nemirovski,et al. Non-euclidean restricted memory level method for large-scale convex optimization , 2005, Math. Program..
[51] Andreas Grothey,et al. Decomposition methods for nonlinear nonconvex optimization problems , 2001 .
[52] A. Bagirov,et al. Limited memory discrete gradient bundle method for nonsmooth derivative-free optimization , 2012 .
[53] G. Diehr. Evaluation of a Branch and Bound Algorithm for Clustering , 1985 .
[54] J. Haslinger,et al. Finite Element Approximation for Optimal Shape, Material and Topology Design , 1996 .
[55] François Oustry,et al. A second-order bundle method to minimize the maximum eigenvalue function , 2000, Math. Program..
[56] K. Kunisch,et al. An active set strategy based on the augmented Lagrangian formulation for image restoration , 1999 .
[57] Krzysztof C. Kiwiel,et al. Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..
[58] José Mario Martínez,et al. Convergent algorithms for protein structural alignment , 2007, BMC Bioinformatics.
[59] Rita Pini,et al. A survey of recent[1985-1995]advances in generalized convexity with applications to duality theory and optimality conditions , 1997 .
[60] Dirk Neumann,et al. A new method for the gradient‐based optimization of molecular complexes , 2009, J. Comput. Chem..
[61] K. Kiwiel. An Exact Penalty Function Algorithm for Non-smooth Convex Constrained Minimization Problems , 1985 .
[62] Karl Kunisch,et al. Denoising of Smooth Images Using L1-Fitting , 2005, Computing.
[63] Napsu Karmitsa,et al. Test problems for large-scale nonsmooth minimization , 2007 .
[64] Jinn-Moon Yang,et al. GEMDOCK: A generic evolutionary method for molecular docking , 2004, Proteins.
[65] B. M. Glover,et al. Continuous approximations to generalized jacobians , 1999 .
[66] Nelson Maculan,et al. Hyperbolic smoothing and penalty techniques applied to molecular structure determination , 2011, Oper. Res. Lett..
[67] Alexander Shapiro,et al. On Eigenvalue Optimization , 1995, SIAM J. Optim..
[68] K. Miettinen,et al. Interactive multiobjective optimization system NIMBUS applied to nonsmooth structural design problems , 1996 .
[69] Adil M. Bagirov,et al. Estimation of a Regression Function by Maxima of Minima of Linear Functions , 2009, IEEE Transactions on Information Theory.
[70] C. Lemaréchal,et al. Bundle methods applied to the unit-commitment problem , 1996 .
[71] Pavel Pudil,et al. Introduction to Statistical Pattern Recognition , 2006 .
[72] Renxiao Wang,et al. Comparative evaluation of 11 scoring functions for molecular docking. , 2003, Journal of medicinal chemistry.
[73] Markku Miettinen. On constrained hemivariational inequalities and their approximation , 1995 .
[74] C. Lemaréchal. Nonsmooth Optimization and Descent Methods , 1978 .
[75] Jan Vlcek,et al. A bundle-Newton method for nonsmooth unconstrained minimization , 1998, Math. Program..
[76] Jaroslav Haslinger,et al. On numerical solution of hemivariational inequalities by nonsmooth optimization methods , 1995, J. Glob. Optim..
[77] Claude Lemaréchal,et al. Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..
[78] Nathan Linial,et al. Approximate protein structural alignment in polynomial time. , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[79] S. Komlósi,et al. Generalized monotonicity and generalized convexity , 1995 .
[80] Kaisa Miettinen,et al. Globally convergent limited memory bundle method for large-scale nonsmooth optimization , 2007, Math. Program..
[81] Annabella Astorino,et al. DC models for spherical separation , 2010, J. Glob. Optim..
[82] M. M. Ali,et al. Limited memory interior point bundle method for large inequality constrained nonsmooth minimization , 2008, Appl. Math. Comput..
[83] Klaus Schittkowski,et al. Test examples for nonlinear programming codes , 1980 .
[84] Helga Schramm,et al. Eine Kombination von Bundle- und Trust-region-Verfahren zur Lösung nichtdifferenzierbarer Optimierungsprobleme , 1989 .
[85] Kaisa Miettinen,et al. New limited memory bundle method for large-scale nonsmooth optimization , 2004, Optim. Methods Softw..
[86] J. B. Rosen,et al. Construction of nonlinear programming test problems , 1965 .
[87] Adil M. Bagirov,et al. Codifferential method for minimizing nonsmooth DC functions , 2011, J. Glob. Optim..
[88] R. Mifflin. A modification and an extension of Lemarechal’s algorithm for nonsmooth minimization , 1982 .
[89] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[90] Adil M. Bagirov,et al. Nonsmooth nonconvex optimization approach to clusterwise linear regression problems , 2013, Eur. J. Oper. Res..
[91] Adil M. Bagirov. Minimization Methods for One Class of Nonsmooth Functions and Calculation of Semi-Equilibrium Prices , 1999 .
[92] M. F. Monaco,et al. Variants to the cutting plane approach for convex nondifferentiable optimization , 1992 .
[93] P. Neittaanmäki,et al. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .
[94] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[95] M. M. MÄKELÄ,et al. Comparing Nonsmooth Nonconvex Bundle Methods in Solving Hemivariational Inequalities , 1999, J. Glob. Optim..
[96] Marcel Mongeau,et al. Discontinuous piecewise linear optimization , 1998, Math. Program..
[97] Jorge Nocedal,et al. Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..
[98] Adilson Elias Xavier,et al. The hyperbolic smoothing clustering method , 2010, Pattern Recognit..
[99] Ladislav Luksan,et al. Dual method for solving a special problem of quadratic programming as a subproblem at linearly constrained nonlinear minimax approximation , 1984, Kybernetika.
[100] Qunfeng Dong,et al. A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..
[101] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[102] D. Mayne,et al. Superlinearly convergent algorithm for min-max problems , 1991 .
[103] Pierre Hansen,et al. Globally optimal clusterwise regression by mixed logical-quadratic programming , 2011, Eur. J. Oper. Res..
[104] Stacey Levine,et al. Image Restoration via Nonstandard Diffusion , 2004 .
[105] L. Evans. Measure theory and fine properties of functions , 1992 .
[106] Adil M. Bagirov,et al. A quasisecant method for minimizing nonsmooth functions , 2010, Optim. Methods Softw..
[107] Annabella Astorino,et al. Polyhedral Separability Through Successive LP , 2002 .
[108] C. Lemaréchal,et al. ON A BUNDLE ALGORITHM FOR NONSMOOTH OPTIMIZATION , 1981 .
[109] Per Olov Lindberg,et al. Preliminary computational experience with a descent level method for convex nondifferentiable optimization , 1996 .
[110] Jean-Paul Penot. Variations on the Theme of Nonsmooth Analysis: Another Subdifferential , 1985 .
[111] Adil M. Bagirov,et al. A secant method for nonsmooth optimization , 2007 .
[112] Gennady M Verkhivker,et al. Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.
[113] Jonathan F. Bard,et al. Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation , 1988, Oper. Res..
[114] Fabio Schoen,et al. Fast Global Optimization of Difficult Lennard-Jones Clusters , 2002, Comput. Optim. Appl..
[115] P. Toint,et al. Improving the Decomposition of Partially Separable Functions in the Context of Large-Scale Optimization: a First Approach· , 1993 .
[116] El-Desouky Rahmo,et al. Approximating Clarke’s subgradients of semismooth functions by divided differences , 2007, Numerical Algorithms.
[117] K. Kiwiel. Methods of Descent for Nondifferentiable Optimization , 1985 .
[118] Dimitri P. Bertsekas,et al. Necessary and sufficient conditions for a penalty method to be exact , 1975, Math. Program..
[119] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[120] Jaroslav Haslinger,et al. Finite Element Method for Hemivariational Inequalities , 1999 .
[121] A. Conn,et al. An Efficient Method to Solve the Minimax Problem Directly , 1978 .
[122] Le Thi Hoai An. Solving Large Scale Molecular Distance Geometry Problems by a Smoothing Technique via the Gaussian Transform and D.C. Programming , 2003, J. Glob. Optim..
[123] J. Hiriart-Urruty. New concepts in nondifferentiable programming , 1979 .
[124] Jochem Zowe,et al. A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..
[125] D. Mayne,et al. On the Extension of Constrained Optimization Algorithms from Differentiable to Nondifferentiable Problems , 1983 .
[126] Khaled S. Al-Sultan,et al. A Tabu search approach to the clustering problem , 1995, Pattern Recognit..
[127] L. Grippo,et al. Exact penalty functions in constrained optimization , 1989 .
[128] K. Kunisch,et al. BV-type regularization methods for convoluted objects with edge, flat and grey scales , 2000 .
[129] Mila Nikolova,et al. Minimizers of Cost-Functions Involving Nonsmooth Data-Fidelity Terms. Application to the Processing of Outliers , 2002, SIAM J. Numer. Anal..
[130] John Darzentas,et al. Problem Complexity and Method Efficiency in Optimization , 1983 .
[131] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[132] Sfindor KOMLOSI. Some properties of nondifferentiable pseudoconvex functions , 1983, Math. Program..
[133] W. DeSarbo,et al. A maximum likelihood methodology for clusterwise linear regression , 1988 .
[134] David J. Spiegelhalter,et al. Machine Learning, Neural and Statistical Classification , 2009 .
[135] Hans-Hermann Bock,et al. Clustering and Neural Networks , 1998 .
[136] T. Kärkkäinen,et al. Nonmonotone and Monotone Active-Set Methods for Image Restoration, Part 1: Convergence Analysis , 2000 .
[137] Adrian S. Lewis,et al. Approximating Subdifferentials by Random Sampling of Gradients , 2002, Math. Oper. Res..
[138] René Thomsen,et al. MolDock: a new technique for high-accuracy molecular docking. , 2006, Journal of medicinal chemistry.
[139] H. W. Zaininger,et al. Synthetic electric utility systems for evaluating advanced technologies. Final report , 1977 .
[140] Jon W. Tolle,et al. Exact penalty functions in nonlinear programming , 1973, Math. Program..
[141] Arnold Neumaier,et al. Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..
[142] A. Lewis,et al. Optimizing Matrix Stability , 1999 .
[143] José Mario Martínez,et al. Low Order-Value Optimization and applications , 2009, J. Glob. Optim..
[144] G. Birkhoff,et al. Piecewise affine functions and polyhedral sets , 1994 .
[145] Gordon M. Crippen,et al. Distance Geometry and Molecular Conformation , 1988 .
[146] Marc Teboulle,et al. Mirror descent and nonlinear projected subgradient methods for convex optimization , 2003, Oper. Res. Lett..
[147] A. Bagirov,et al. Discrete Gradient Method: Derivative-Free Method for Nonsmooth Optimization , 2008 .
[148] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[149] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[150] Wayne S. DeSarbo,et al. A simulated annealing methodology for clusterwise linear regression , 1989 .
[151] S. Uryas'ev. New variable-metric algorithms for nondifferentiable optimization problems , 1991 .
[152] Refail Kasimbeyli. Radial epiderivatives and set-valued optimization , 2009 .
[153] Annabella Astorino,et al. Ellipsoidal separation for classification problems , 2005, Optim. Methods Softw..
[154] J. Haslinger,et al. Approximation of optimal control problems of hemivariational inequalities , 1992 .
[155] Keinosuke Fukunaga,et al. Introduction to statistical pattern recognition (2nd ed.) , 1990 .
[156] Muhammad Aslam Noor,et al. Hemivariational inequalities , 2005 .
[157] P. Lions,et al. Image recovery via total variation minimization and related problems , 1997 .
[158] Andreas Griewank,et al. Computing Large Sparse Jacobian Matrices Using Automatic Differentiation , 1994, SIAM J. Sci. Comput..
[159] S. Nobakhtian. Multiobjective Problems with Nonsmooth Equality Constraints , 2009 .
[160] Claude Lemaréchal,et al. An approach to variable metric bundle methods , 1993, System Modelling and Optimization.
[161] A. Bihain. Optimization of upper semidifferentiable functions , 1984 .
[162] Gennady Verkhivker,et al. Deciphering common failures in molecular docking of ligand-protein complexes , 2000, J. Comput. Aided Mol. Des..
[163] Michael L. Overton,et al. Second Derivatives for Optimizing Eigenvalues of Symmetric Matrices , 1995, SIAM J. Matrix Anal. Appl..
[164] Krzysztof C. Kiwiel,et al. Exact penalty functions in proximal bundle methods for constrained convex nondifferentiable minimization , 1991, Math. Program..
[165] Stephen M. Robinson,et al. Linear convergence of epsilon-subgradient descent methods for a class of convex functions , 1999, Math. Program..
[166] Jonathan W. Essex,et al. A review of protein-small molecule docking methods , 2002, J. Comput. Aided Mol. Des..
[167] Kristin P. Bennett,et al. A Parametric Optimization Method for Machine Learning , 1997, INFORMS J. Comput..
[168] Adil M. Bagirov,et al. Piecewise Partially Separable Functions and a Derivative-free Algorithm for Large Scale Nonsmooth Optimization , 2006, J. Glob. Optim..
[169] L. Luksan,et al. Globally Convergent Variable Metric Method for Convex Nonsmooth Unconstrained Minimization1 , 1999 .
[170] J. J. Moré,et al. Global continuation for distance geometry problems , 1995 .
[171] Adil M. Bagirov,et al. A new nonsmooth optimization algorithm for minimum sum-of-squares clustering problems , 2006, Eur. J. Oper. Res..
[172] Jonathan M. Borwein,et al. Nonsmooth calculus in finite dimensions , 1987 .
[173] L. Luksan,et al. Globally Convergent Variable Metric Method for Nonconvex Nondifferentiable Unconstrained Minimization , 2001 .
[174] M. Mäkelä,et al. On Nonsmooth Multiobjective Optimality Conditions with Generalized Convexities , 2014 .
[175] Adil M. Bagirov,et al. An algorithm for minimizing clustering functions , 2005 .
[176] Franz Kappel,et al. An Implementation of Shor's r-Algorithm , 2000, Comput. Optim. Appl..
[177] Yuehua Wu,et al. A Procedure for Estimating the Number of Clusters in Logistic Regression Clustering , 2009, J. Classif..
[178] Mila Nikolova,et al. Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.
[179] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[180] Jerome H. Friedman. Multivariate adaptive regression splines (with discussion) , 1991 .
[181] Pierre Hansen,et al. Extensions to the repetitive branch and bound algorithm for globally optimal clusterwise regression , 2011, Comput. Oper. Res..
[182] Alexander D. Joffe. New applications of nonsmooth analysis to nonsmooth optimization , 1983 .
[183] Robert Mifflin,et al. A quasi-second-order proximal bundle algorithm , 1996, Math. Program..
[184] Franz Rendl,et al. A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..
[185] Samir Elhedhli,et al. Nondifferentiable Optimization , 2009, Encyclopedia of Optimization.
[186] Roger Fletcher,et al. Practical methods of optimization; (2nd ed.) , 1987 .
[187] Adil M. Bagirov,et al. An algorithm for the estimation of a regression function by continuous piecewise linear functions , 2010, Comput. Optim. Appl..
[188] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[189] Helmuth Späth,et al. Algorithm 39 Clusterwise linear regression , 1979, Computing.
[190] Antonio Fuduli,et al. A DC piecewise affine model and a bundling technique in nonconvex nonsmooth minimization , 2004, Optim. Methods Softw..
[191] Pierre Hansen,et al. Variable Neighborhood Decomposition Search , 1998, J. Heuristics.
[192] Sven G. Bartels,et al. Continuous selections of linear functions and nonsmooth critical point theory , 1995 .
[193] Jaroslav Haslinger,et al. Approximation of non-monotone multivalued differential inclusions , 1995 .