Quantum walks driven by many coins
暂无分享,去创建一个
[1] V. Kendon,et al. Decoherence in a quantum walk on the line , 2002, quant-ph/0210047.
[2] Daniel A. Spielman,et al. Exponential algorithmic speedup by a quantum walk , 2002, STOC '03.
[3] Viv Kendon,et al. Decoherence is useful in quantum walks , 2002 .
[4] T. Brun,et al. Quantum to classical transition for random walks. , 2002, Physical review letters.
[5] W. Dur,et al. Quantum walks in optical lattices , 2002, quant-ph/0207137.
[6] P. Knight,et al. Quantum quincunx in cavity quantum electrodynamics , 2002, quant-ph/0207028.
[7] Marcel Paz Goldschen,et al. One-dimensional quantum walks with absorbing boundaries , 2002, J. Comput. Syst. Sci..
[8] Norio Konno,et al. A new type of limit theorems for the one-dimensional quantum random walk , 2002, quant-ph/0206103.
[9] N. Konno. Quantum Random Walks in One Dimension , 2002, Quantum Inf. Process..
[10] Julia Kempe,et al. Quantum Random Walks Hit Exponentially Faster , 2002, ArXiv.
[11] Norio Konno,et al. Symmetricity of Distribution for One-Dimensional Hadamard Walk , 2002 .
[12] Hiroshi Imai,et al. An Analysis of Absorbing Times of Quantum Walks , 2002, UMC.
[13] Jiangfeng Du,et al. Quantum Simulation of Continuous-Time Random Walks , 2002 .
[14] D. Meyer,et al. Parrondo Games as Lattice Gas Automata , 2001, quant-ph/0110028.
[15] A. Russell,et al. Quantum Walks on the Hypercube , 2001, RANDOM.
[16] Nayak Ashwin,et al. Quantum Walk on the Line , 2000 .
[17] A. Nayak,et al. Quantum Walk on the Line , 2000, quant-ph/0010117.
[18] S. Orszag,et al. Advanced Mathematical Methods For Scientists And Engineers , 1979 .
[19] N. Bleistein,et al. Asymptotic Expansions of Integrals , 1975 .
[20] Physical Review , 1965, Nature.