Total coloring of 1-toroidal graphs with maximum degree at least 11 and no adjacent triangles
暂无分享,去创建一个
[1] Jianfeng Hou,et al. On total colorings of 1-planar graphs , 2013, J. Comb. Optim..
[2] Xin Zhang,et al. On edge colorings of 1-planar graphs , 2011, Inf. Process. Lett..
[3] Oleg V. Borodin,et al. On the total coloring of planar graphs. , 1989 .
[4] Guizhen Liu,et al. On edge colorings of 1-planar graphs without adjacent triangles , 2012, Inf. Process. Lett..
[5] Oleg V. Borodin. A new proof of the 6 color theorem , 1995, J. Graph Theory.
[6] H. Yap. Total Colourings of Graphs , 1996 .
[7] M. Rosenfeld,et al. On the total coloring of certain graphs , 1971 .
[8] J. Pach,et al. Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .
[9] Janos Galambos. A Probabilistic Approach to mean Values of Multiplicative Functions , 1970 .
[10] D. de Werra,et al. Graph Coloring Problems , 2013 .
[11] André Raspaud,et al. Acyclic colouring of 1-planar graphs , 2001, Discret. Appl. Math..
[12] Yue Zhao,et al. On total 9-coloring planar graphs of maximum degree seven , 1999, J. Graph Theory.
[13] N. Vijayaditya. On Total Chromatic Number of a Graph , 1971 .
[14] Alexandr V. Kostochka,et al. The total coloring of a multigraph with maximal degree 4 , 1977, Discret. Math..
[15] Alexandr V. Kostochka,et al. The total chromatic number of any multigraph with maximum degree five is at most seven , 1996, Discret. Math..
[16] G. Ringel. Ein Sechsfarbenproblem auf der Kugel , 1965 .
[17] Xin Zhang,et al. List edge and list total coloring of 1-planar graphs , 2012 .