Direct electrochemistry of membrane-entrapped horseradish peroxidase.: Part I. A voltammetric and spectroscopic study

Abstract This paper reports the electrochemical behaviour, relative to the Fe(III)–Fe(II) conversion, of horseradish peroxidase (HRP) entrapped within a solid matrix, at a pyrolytic graphite electrode. The results indicate that (i) immobilization enhances the electron exchange between the protein and the electrode surface; (ii) reversible electron transfer (eT) is achieved within a wide pH range (pH 3.0–12.0) even in the absence of mediators, (ii) the embedded protein shows native-like structural properties and increased stability. The results obtained may be of potential value, since they represent a first step for engineering a novel `solid-state' electrode system, of importance for basic and applied biochemistry.

[1]  E. Chiancone,et al.  CD studies on the heme environment in erythrocruorins and chlorocruorins , 1979, FEBS letters.

[2]  R. Murray,et al.  CHEMICALLY MODIFIED ELECTRODES , 1977 .

[3]  H. Hill,et al.  Electron transfer reactions of metalloproteins at peptide-modified gold electrodes. , 1990, European journal of biochemistry.

[4]  H. Hill,et al.  Direct and indirect electron transfer between electrodes and redox proteins. , 1988, European journal of biochemistry.

[5]  Lo Gorton,et al.  An electrochemical sensor for hydrogen peroxide based on peroxidase adsorbed on a spectrographic graphite electrode , 1989 .

[6]  F. Armstrong,et al.  Reactions of electron-transfer proteins at electrodes , 1985, Quarterly Reviews of Biophysics (print).

[7]  A. Pande,et al.  6 – Circular Dichroism Studies of Hemoproteins and Heme Models , 1978 .

[8]  N. Comisso,et al.  Amperometric determination of peroxides by glassy carbon electrodes modified with copper‐phenanthroline complexes , 1996 .

[9]  H. Hill,et al.  Amperometric enzyme electrodes , 1986 .

[10]  Philip N. Bartlett,et al.  Electrochemical sensors: theory and experiment , 1986 .

[11]  P. Bianco,et al.  Electrochemistry at a pyrolytic graphite electrode: Study of the adsorption of hemin , 1990 .

[12]  W. D. Hewson,et al.  6 – Peroxidases, Catalases, and Chloroperoxidase , 1979 .

[13]  H. Hill,et al.  Electrochemistry of horse heart cytochrome c , 1979 .

[14]  J. Kulys,et al.  Redox conversion of peroxidase on surface-modified gold electrode , 1983 .

[15]  W. Kuhr,et al.  Enzyme-modified carbon-fiber microelectrodes with millisecond response times , 1991 .

[16]  Jenny Emnéus,et al.  Peroxidase-modified electrodes: Fundamentals and application , 1996 .

[17]  S. Dong,et al.  Redox reaction of peroxidase at poly(o‐phenylenediamine) modified electrode , 1994 .

[18]  A. L. Crumbliss,et al.  Direct electron transfer at horseradish peroxidase—colloidal gold modified electrodes , 1992 .

[19]  Ernest Yeager,et al.  Differential Capacitance Study on the Basal Plane of Stress-Annealed Pyrolytic Graphite , 1972 .

[20]  G. J. Moody,et al.  Chemically immobilised enzyme electrodes for hydrogen peroxide determination , 1988 .

[21]  H. A. Harbury Oxidation-reduction potentials of horseradish peroxidase. , 1953, The Journal of biological chemistry.

[22]  A. Lambeir,et al.  Kinetics of the reaction of compound II of horseradish peroxidase with hydrogen peroxide to form compound III. , 1989, European journal of biochemistry.