Adaptive piezoelectric shunt damping

Piezoelectric shunt damping systems reduce structural vibration by shunting an attached piezoelectric transducer with an electrical impedance. Current impedance designs result in a coupled electrical resonance at the target modal frequencies. In practical situations, variation in structural load or environmental conditions can result in significant changes in the structural resonance frequencies. This variation can severely reduce shunt damping performance as the electrical impedance remains tuned to the nominal resonance frequencies. This paper introduces a method for online adaptation of the shunting impedance. A reconstructed estimate of the RMS strain is minimized by varying the component values of a synthetic shunt damping circuit. The techniques presented are applied in real time to tune the component values of a randomly excited beam.

[1]  Joseph J. Hollkamp,et al.  A Self-Tuning Piezoelectric Vibration Absorber , 1994 .

[2]  George A. Lesieutre,et al.  AN ACTIVELY TUNED SOLID-STATE VIBRATION ABSORBER USING CAPACITIVE SHUNTING OF PIEZOELECTRIC STIFFNESS , 2000 .

[3]  Ephrahim Garcia,et al.  A Self-Sensing Piezoelectric Actuator for Collocated Control , 1992 .

[4]  Andrew J. Fleming,et al.  Multiple Mode Passive Piezoelectric Shunt Dampener 1 , 2002 .

[5]  S. O. Reza Moheimani,et al.  Innovations in piezoelectric shunt damping , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[6]  Nesbitt W. Hagood,et al.  Modelling of Piezoelectric Actuator Dynamics for Active Structural Control , 1990 .

[7]  Shu-yau Wu,et al.  Multiple PZT transducers implemented with multiple-mode piezoelectric shunting for passive vibration damping , 1999, Smart Structures.

[8]  Andrew J. Fleming,et al.  On the feedback structure of wideband piezoelectric shunt damping systems , 2002 .

[9]  D. L. Edberg,et al.  Theoretical and Experimental Studies of a Truss Incorporating Active Members , 1992 .

[10]  R.H.S. Riordan,et al.  Simulated inductors using differential amplifiers , 1967 .

[11]  S. O. Reza Moheimani,et al.  Optimization and implementation of multimode piezoelectric shunt damping systems , 2002 .

[12]  Nesbitt W. Hagood,et al.  Damping of structural vibrations with piezoelectric materials and passive electrical networks , 1991 .

[13]  Andrew S. Bicos,et al.  Structural vibration damping experiments using improved piezoelectric shunts , 1997, Smart Structures.

[14]  J. Hollkamp Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts , 1994 .

[15]  Shu-yau Wu,et al.  Piezoelectric shunts with a parallel R-L circuit for structural damping and vibration control , 1996, Smart Structures.

[16]  Shu-yau Wu,et al.  Method for multiple-mode shunt damping of structural vibration using a single PZT transducer , 1998, Smart Structures.

[17]  J. Bendat,et al.  Measurement and Analysis of Random Data , 1968 .

[18]  M. O. Tokhi,et al.  Active noise control systems , 1987 .

[19]  S. O. Reza Moheimani,et al.  Subspace-Based System Identification for an Acoustic Enclosure , 2002 .

[20]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[21]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[22]  Nesbitt W. Hagood,et al.  Experimental investigation into passive damping enhancement for space structures , 1991 .

[23]  S. O. Reza Moheimani,et al.  Current flowing multiple-mode piezoelectric shunt dampener , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[24]  Andrew J. Fleming,et al.  Synthetic impedance for implementation of piezoelectric shunt-damping circuits , 2000 .

[25]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[26]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .