Divergence stability in connection with the $p$ -version of the finite element method

Abstract : The paper analyzes the divergence stability of the p-version of the finite element method with the applications to the Stokes problem and elasticity problem with nearly uncompressible material. Many problems in continuum mechanics involve an incompressibility condition, usually in the form of a divergence constraint. The numerical discretization of such a constraint presents some interesting problems with regard to stability. As an important example we consider the two dimensional Stokes equations. The lack of divergence stability affects the accuracy of the pressure approximation much more drastically, and a certain postprocessing (filtering) of the pressures may be necessary as p approaches infinity. (jhd)

[1]  R. A. Nicolaides,et al.  On the stability of bilinear-constant velocity-pressure finite elements , 1984 .

[2]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[3]  I. Babuska Error-bounds for finite element method , 1971 .

[4]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[5]  Giovanni Sacchi Landriani,et al.  Spectral Tau approximation of the two-dimensional stokes problem , 1988 .

[6]  Claudio Canuto,et al.  Combined finite element and spectral approximation of the Navier-Stokes equations , 1984 .

[7]  Manil Suri,et al.  On the stability and convergence of higher-order mixed finite element methods for second-order elliptic problems , 1990 .

[8]  Manil Suri,et al.  The $p$-version of the finite element method for elliptic equations of order $2l$ , 1990 .

[9]  Michael Vogelius,et al.  Conforming finite element methods for incompressible and nearly incompressible continua , 1984 .

[10]  D. Gottlieb,et al.  Numerical analysis of spectral methods : theory and applications , 1977 .

[11]  Y. Maday,et al.  Calcul de la pression dans la résolution spectrale du problème de Stokes , 1987 .

[12]  I. Babuska,et al.  Stress Computations for Nearly Incompressible Materials , 1988 .

[13]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[14]  M. Vogelius An analysis of thep-version of the finite element method for nearly incompressible materials , 1983 .

[15]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[16]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[17]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[18]  Douglas N. Arnold,et al.  Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. , 1987 .

[19]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[20]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[21]  Ben Qi Guo Theh−p version of the finite element method for elliptic equations of order2m , 1988 .

[22]  Claes Johnson,et al.  Analysis of some mixed finite element methods related to reduced integration , 1982 .

[23]  Einar M. Rønquist,et al.  Optimal spectral element methods for the unsteady three-dimensional incompressible Navier-Stokes equations , 1988 .

[24]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[25]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[26]  R. A. Nicolaides,et al.  Stable and Semistable Low Order Finite Elements for Viscous Flows , 1985 .

[27]  Yvon Maday,et al.  Spectral approximation of the periodic-nonperiodic Navier-Stokes equations , 1987 .