MoDEL (Molecular Dynamics Extended Library): a database of atomistic molecular dynamics trajectories.

[1]  L. Holm,et al.  The Pfam protein families database , 2011, Nucleic Acids Res..

[2]  Baris E. Suzek,et al.  The Universal Protein Resource (UniProt) in 2010 , 2009, Nucleic Acids Res..

[3]  Guang Song,et al.  Protein elastic network models and the ranges of cooperativity , 2009, Proceedings of the National Academy of Sciences.

[4]  Adam Hospital,et al.  FlexServ: an integrated tool for the analysis of protein flexibility , 2009, Bioinform..

[5]  Modesto Orozco,et al.  Comparison of molecular dynamics and superfamily spaces of protein domain deformation , 2009, BMC Structural Biology.

[6]  Modesto Orozco,et al.  United-Atom Discrete Molecular Dynamics of Proteins Using Physics-Based Potentials. , 2008, Journal of chemical theory and computation.

[7]  M. Orozco,et al.  Exploring the suitability of coarse-grained techniques for the representation of protein dynamics. , 2008, Biophysical journal.

[8]  Valerie Daggett,et al.  Dynameomics: a multi-dimensional analysis-optimized database for dynamic protein data. , 2008, Protein engineering, design & selection : PEDS.

[9]  R Dustin Schaeffer,et al.  Dynameomics: mass annotation of protein dynamics and unfolding in water by high-throughput atomistic molecular dynamics simulations. , 2008, Protein engineering, design & selection : PEDS.

[10]  Valerie Daggett,et al.  Dynameomics: design of a computational lab workflow and scientific data repository for protein simulations. , 2008, Protein engineering, design & selection : PEDS.

[11]  R. Goldstein The structure of protein evolution and the evolution of protein structure. , 2008, Current opinion in structural biology.

[12]  Modesto Orozco,et al.  GRID‐MD—A tool for massive simulation of protein channels , 2008, Proteins.

[13]  D. van der Spoel,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[14]  Alfonso Valencia,et al.  Interoperability with Moby 1.0--it's better than sharing your toothbrush! , 2008, Briefings in bioinformatics.

[15]  M. Karplus,et al.  A hierarchy of timescales in protein dynamics is linked to enzyme catalysis , 2007, Nature.

[16]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[17]  J. Skolnick,et al.  Scoring function for automated assessment of protein structure template quality , 2007 .

[18]  P. Chacón,et al.  Thorough validation of protein normal mode analysis: a comparative study with essential dynamics. , 2007, Structure.

[19]  Modesto Orozco,et al.  A consensus view of protein dynamics , 2007, Proceedings of the National Academy of Sciences.

[20]  Jonathan W. Essex,et al.  BioSimGrid: Grid-enabled biomolecular simulation data storage and analysis , 2006, Future Gener. Comput. Syst..

[21]  Charles A Laughton,et al.  Essential Dynamics:  A Tool for Efficient Trajectory Compression and Management. , 2006, Journal of chemical theory and computation.

[22]  F. J. Luque,et al.  Data Mining of Molecular Dynamics Trajectories of Nucleic Acids , 2006, Journal of biomolecular structure & dynamics.

[23]  D. Wishart,et al.  DrugBank: a comprehensive resource for in silico drug discovery and exploration , 2005, Nucleic Acids Res..

[24]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[25]  I. Bahar,et al.  Coarse-grained normal mode analysis in structural biology. , 2005, Current opinion in structural biology.

[26]  Werner Dubitzky,et al.  Towards Data Warehousing and Mining of Protein Unfolding Simulation Data , 2005, Journal of Clinical Monitoring and Computing.

[27]  M. Karplus,et al.  Molecular dynamics and protein function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Valentina Tozzini,et al.  Coarse-grained models for proteins. , 2005, Current opinion in structural biology.

[29]  D. Zerbino,et al.  An analysis of core deformations in protein superfamilies. , 2005, Biophysical journal.

[30]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[31]  Frances M. G. Pearl,et al.  The CATH Domain Structure Database and related resources Gene3D and DHS provide comprehensive domain family information for genome analysis , 2004, Nucleic Acids Res..

[32]  David Baker,et al.  Improvement of comparative model accuracy by free-energy optimization along principal components of natural structural variation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Abagyan,et al.  Optimal docking area: A new method for predicting protein–protein interaction sites , 2004, Proteins.

[34]  Jeremy C. Smith,et al.  The role of dynamics in enzyme activity. , 2003, Annual review of biophysics and biomolecular structure.

[35]  F. J. Luque,et al.  Theoretical methods for the simulation of nucleic acids. , 2003, Chemical Society reviews.

[36]  Ryan Day,et al.  A consensus view of fold space: Combining SCOP, CATH, and the Dali Domain Dictionary , 2003, Protein science : a publication of the Protein Society.

[37]  F. J. Luque,et al.  Classical molecular interaction potentials: Improved setup procedure in molecular dynamics simulations of proteins , 2001, Proteins.

[38]  M. Orozco,et al.  Cooperativity in drug-DNA recognition: a molecular dynamics study. , 2001, Journal of the American Chemical Society.

[39]  Ioan Andricioaei,et al.  On the calculation of entropy from covariance matrices of the atomic fluctuations , 2001 .

[40]  D. Baker,et al.  Native protein sequences are close to optimal for their structures. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[42]  M. Karplus,et al.  Native proteins are surface-molten solids: application of the Lindemann criterion for the solid versus liquid state. , 1999, Journal of molecular biology.

[43]  M Karplus,et al.  The allosteric mechanism of the chaperonin GroEL: a dynamic analysis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[45]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[46]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[47]  Karl-Heinz Ott,et al.  Parametrization of GROMOS force field for oligosaccharides and assessment of efficiency of molecular dynamics simulations , 1996, J. Comput. Chem..

[48]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[49]  P. Kollman,et al.  A second generation force field for the simulation of proteins , 1995 .

[50]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[51]  J. Schlitter Estimation of absolute and relative entropies of macromolecules using the covariance matrix , 1993 .

[52]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[53]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[54]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[55]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[56]  M. Karplus,et al.  Dynamics of folded proteins , 1977, Nature.

[57]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[58]  T. Ackermann C. L. Brooks III, M. Karplus, B. M. Pettitt. Proteins: A Theoretical Perspective of Dynamics, Structure and Thermodynamics, Volume LXXI, in: Advances in Chemical Physics, John Wiley & Sons, New York 1988. 259 Seiten, Preis: US $ 65.25 , 1990 .

[59]  M. Karplus,et al.  Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics , 1988 .