BRN2 suppresses apoptosis, reprograms DNA damage repair, and is associated with a high somatic mutation burden in melanoma

Herbert et al. show that BRN2 is associated with DNA damage response proteins and suppresses an apoptosis-associated gene expression program to protect against UVB-, chemotherapy-, and vemurafenib-induced apoptosis.

[1]  Bin Zhang,et al.  15 years of PhosphoSitePlus®: integrating post-translationally modified sites, disease variants and isoforms , 2018, Nucleic Acids Res..

[2]  R. Sturm,et al.  BRN2, a POUerful driver of melanoma phenotype switching and metastasis , 2018, Pigment cell & melanoma research.

[3]  Robert L. Judson,et al.  Bi-allelic Loss of CDKN2A Initiates Melanoma Invasion via BRN2 Activation. , 2018, Cancer cell.

[4]  Tianqing Li,et al.  Brn2 Alone Is Sufficient to Convert Astrocytes into Neural Progenitors and Neurons. , 2018, Stem Cells and Development.

[5]  Steven M. Anderson,et al.  Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden , 2018, Journal of Immunotherapy for Cancer.

[6]  Robert A. Baldock,et al.  Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair , 2018, Nature Communications.

[7]  D. Green,et al.  MOMP, cell suicide as a BCL-2 family business. , 2018 .

[8]  M. Ringnér,et al.  Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma , 2017, Nature Communications.

[9]  H. van Attikum,et al.  Meta-analysis of DNA double-strand break response kinetics , 2017, Nucleic acids research.

[10]  F. Al-Ejeh,et al.  MITF and BRN2 contribute to metastatic growth after dissemination of melanoma , 2017, Scientific Reports.

[11]  Hyungwon Choi,et al.  ProHits-viz: a suite of web tools for visualizing interaction proteomics data , 2017, Nature Methods.

[12]  S. Jackson,et al.  ATM, ATR, and DNA-PK: The Trinity at the Heart of the DNA Damage Response. , 2017, Molecular cell.

[13]  G. Legube,et al.  Transcription-Coupled DNA Double-Strand Break Repair: Active Genes Need Special Care. , 2017, Journal of molecular biology.

[14]  D. Fisher,et al.  The master role of microphthalmia-associated transcription factor in melanocyte and melanoma biology. , 2017, Laboratory investigation; a journal of technical methods and pathology.

[15]  N. Haass,et al.  NFIB Mediates BRN2 Driven Melanoma Cell Migration and Invasion Through Regulation of EZH2 and MITF , 2017, EBioMedicine.

[16]  Ziying Liu,et al.  PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes , 2017, Genes & development.

[17]  M. Rubin,et al.  The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. , 2017, Cancer discovery.

[18]  Matthew J. Daniels,et al.  Translation reprogramming is an evolutionarily conserved driver of phenotypic plasticity and therapeutic resistance in melanoma , 2017, Genes & development.

[19]  J. Wysocka,et al.  Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution , 2016, Cell.

[20]  M. Tyers,et al.  Data Independent Acquisition analysis in ProHits 4.0. , 2016, Journal of proteomics.

[21]  A. Taranto,et al.  In silico studies of the interaction between BRN2 protein and MORE DNA , 2016, Journal of Molecular Modeling.

[22]  Nicola D. Roberts,et al.  Germline MC1R status influences somatic mutation burden in melanoma , 2016, Nature Communications.

[23]  B. Bastian,et al.  From melanocytes to melanomas , 2016, Nature Reviews Cancer.

[24]  Xiang-Dong Fu,et al.  Sequential Regulatory Loops as Key Gatekeepers for Neuronal Reprogramming in Human Cells , 2016, Nature Neuroscience.

[25]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[26]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC 1 mutations in melanoma , 2016 .

[27]  J. Ausió,et al.  Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation* , 2015, The Journal of Biological Chemistry.

[28]  R. Dummer,et al.  The Genetic Evolution of Melanoma from Precursor Lesions. , 2015, The New England journal of medicine.

[29]  M. McMahon,et al.  AKT1 Activation Promotes Development of Melanoma Metastases. , 2015, Cell reports.

[30]  S. Gabriel,et al.  Genomic correlates of response to CTLA-4 blockade in metastatic melanoma , 2015, Science.

[31]  P. Robson,et al.  Selective influence of Sox2 on POU transcription factor binding in embryonic and neural stem cells , 2015, EMBO reports.

[32]  S. Elledge,et al.  A Systematic Analysis of Factors Localized to Damaged Chromatin Reveals PARP-Dependent Recruitment of Transcription Factors. , 2015, Cell reports.

[33]  S. Aerts,et al.  Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state , 2015, Nature Communications.

[34]  Anne-Claude Gingras,et al.  Proximity biotinylation and affinity purification are complementary approaches for the interactome mapping of chromatin-associated protein complexes. , 2015, Journal of proteomics.

[35]  J. Wolchok,et al.  Genetic basis for clinical response to CTLA-4 blockade in melanoma. , 2014, The New England journal of medicine.

[36]  Guomin Liu,et al.  SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. , 2014, Journal of proteomics.

[37]  A. Gingras,et al.  Incorporating DNA shearing in standard affinity purification allows simultaneous identification of both soluble and chromatin-bound interaction partners. , 2014, Journal of proteomics.

[38]  C. Berking,et al.  POU transcription factors in melanocytes and melanoma. , 2014, European journal of cell biology.

[39]  Howard Y. Chang,et al.  Hierarchical Mechanisms for Direct Reprogramming of Fibroblasts to Neurons , 2013, Cell.

[40]  Tony Pawson,et al.  Mapping differential interactomes by affinity purification coupled with data independent mass spectrometry acquisition , 2013, Nature Methods.

[41]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[42]  Anushya Muruganujan,et al.  Large-scale gene function analysis with the PANTHER classification system , 2013, Nature Protocols.

[43]  I. Aoki,et al.  POU domain transcription factor BRN2 is crucial for expression of ASCL1, ND1 and neuroendocrine marker molecules and cell growth in small cell lung cancer , 2013, Pathology international.

[44]  R. Jaenisch,et al.  SOX2 Co-Occupies Distal Enhancer Elements with Distinct POU Factors in ESCs and NPCs to Specify Cell State , 2013, PLoS genetics.

[45]  Hun-taeg Chung,et al.  Reactive oxygen species in the activation of MAP kinases. , 2013, Methods in enzymology.

[46]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[47]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[48]  H. Shaw,et al.  A Phosphatidylinositol 3-Kinase–Pax3 Axis Regulates Brn-2 Expression in Melanoma , 2012, Molecular and Cellular Biology.

[49]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[50]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[51]  Michael A Davies,et al.  The role of the PI3K-AKT pathway in melanoma. , 2012, Cancer journal.

[52]  J. Bartek,et al.  More than just a focus: The chromatin response to DNA damage and its role in genome integrity maintenance , 2011, Nature Cell Biology.

[53]  Natalie I. Tasman,et al.  iProphet: Multi-level Integrative Analysis of Shotgun Proteomic Data Improves Peptide and Protein Identification Rates and Error Estimates* , 2011, Molecular & Cellular Proteomics.

[54]  Laurent Beuret,et al.  BRCA1 is a new MITF target gene , 2011, Pigment Cell & Melanoma Research.

[55]  M. Herlyn,et al.  Inverse expression states of the BRN2 and MITF transcription factors in melanoma spheres and tumour xenografts regulate the NOTCH pathway , 2011, Oncogene.

[56]  Elke Hacker,et al.  Melanoma cell invasiveness is regulated by miR‐211 suppression of the BRN2 transcription factor , 2011, Pigment cell & melanoma research.

[57]  C. Bertolotto,et al.  Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma , 2011, Oncogene.

[58]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[59]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[60]  Jie Chen,et al.  E2F1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks , 2011, Cell cycle.

[61]  E. Sahai,et al.  Oncogenic BRAF induces melanoma cell invasion by downregulating the cGMP-specific phosphodiesterase PDE5A. , 2011, Cancer cell.

[62]  J. Pascal,et al.  Purification of human PARP-1 and PARP-1 domains from Escherichia coli for structural and biochemical analysis. , 2011, Methods in molecular biology.

[63]  Jie Chen,et al.  E 2 F 1 promotes the recruitment of DNA repair factors to sites of DNA double-strand breaks , 2011 .

[64]  S. Lipton,et al.  Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. , 2011, Cell stem cell.

[65]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[66]  D. Dembélé,et al.  Genome‐wide analysis of POU3F2/BRN2 promoter occupancy in human melanoma cells reveals Kitl as a novel regulated target gene , 2010, Pigment cell & melanoma research.

[67]  Natalie I. Tasman,et al.  A guided tour of the Trans‐Proteomic Pipeline , 2010, Proteomics.

[68]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[69]  E. Sahai,et al.  Intravital imaging reveals transient changes in pigment production and Brn2 expression during metastatic melanoma dissemination. , 2009, Cancer research.

[70]  R. Sturm,et al.  POU domain transcription factors: BRN2 as a regulator of melanocytic growth and tumourigenesis , 2008, Pigment cell & melanoma research.

[71]  P. Nuciforo,et al.  Brn-2 represses microphthalmia-associated transcription factor expression and marks a distinct subpopulation of microphthalmia-associated transcription factor-negative melanoma cells. , 2008, Cancer research.

[72]  N. Hayward,et al.  Histologic and epidemiologic correlates of P-MAPK, Brn-2, pRb, p53, and p16 immunostaining in cutaneous melanomas , 2008, Melanoma research.

[73]  Helen Pickersgill,et al.  Oncogenic BRAF Regulates Melanoma Proliferation through the Lineage Specific Factor MITF , 2008, PloS one.

[74]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[75]  Jane Goodall,et al.  Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. , 2006, Genes & development.

[76]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[77]  V. Natale,et al.  H2AX phosphorylation within the G1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Z. Darżynkiewicz,et al.  Cytometric assessment of histone H2AX phosphorylation: a reporter of DNA damage. , 2006, Methods in molecular biology.

[79]  V. Schreiber,et al.  Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. , 2006, Methods in enzymology.

[80]  V. Natale,et al.  H 2 AX phosphorylation within the G 1 phase after UV irradiation depends on nucleotide excision repair and not DNA double-strand breaks , 2006 .

[81]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Ze'ev Ronai,et al.  ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. , 2005, Molecular cell.

[83]  Z. Darżynkiewicz,et al.  Histone H2AX Phosphorylation after Cell Irradiation with UV-B: Relationship to Cell Cycle Phase and Induction of Apoptosis , 2005, Cell Cycle.

[84]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[85]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[86]  J. Cheng,et al.  Deregulated Akt3 Activity Promotes Development of Malignant Melanoma , 2004, Cancer Research.

[87]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[88]  L. Larue,et al.  Brn-2 Expression Controls Melanoma Proliferation and Is Directly Regulated by β-Catenin , 2004, Molecular and Cellular Biology.

[89]  R. Marais,et al.  The Brn-2 Transcription Factor Links Activated BRAF to Melanoma Proliferation , 2004, Molecular and Cellular Biology.

[90]  G. Veenstra,et al.  POU domain transcription factors in embryonic development , 1997, Molecular Biology Reports.

[91]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[92]  Yunmei Ma,et al.  Mechanism and regulation of human non-homologous DNA end-joining , 2003, Nature Reviews Molecular Cell Biology.

[93]  Tetsuo Noda,et al.  Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons. , 2002, Genes & development.

[94]  Sridhar Ramaswamy,et al.  Bcl2 Regulation by the Melanocyte Master Regulator Mitf Modulates Lineage Survival and Melanoma Cell Viability , 2002, Cell.

[95]  K. Lefort,et al.  Specific induction of gadd45 in human melanocytes and melanoma cells after UVB irradiation , 2002, International journal of cancer.

[96]  K. Lefort,et al.  The specific activation of gadd45 following UVB radiation requires the POU family gene product N-oct3 in human melanoma cells , 2001, Oncogene.

[97]  M. Rosenfeld,et al.  POU domain factors in the neuroendocrine system: lessons from developmental biology provide insights into human disease. , 2001, Endocrine reviews.

[98]  P. Parsons,et al.  Domains of Brn-2 that mediate homodimerization and interaction with general and melanocytic transcription factors. , 2000, European journal of biochemistry.

[99]  B. Luisi,et al.  The virtuoso of versatility: POU proteins that flex to fit. , 2000, Journal of molecular biology.

[100]  D. Higgins,et al.  T-Coffee: A novel method for fast and accurate multiple sequence alignment. , 2000, Journal of molecular biology.

[101]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[102]  D. Latchman,et al.  p53 Suppresses the Activation of the Bcl-2 Promoter by the Brn-3a POU Family Transcription Factor* , 1999, The Journal of Biological Chemistry.

[103]  M. Rosenfeld,et al.  POU domain family values: flexibility, partnerships, and developmental codes. , 1997, Genes & development.

[104]  N. Hay,et al.  The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. , 1997, Genes & development.

[105]  B L Diffey,et al.  The standard erythema dose: a new photobiological concept , 1997, Photodermatology, photoimmunology & photomedicine.

[106]  M. Wegner,et al.  Identification of the Nuclear Localization Signal of the POU Domain Protein Tst-1/Oct6* , 1996, The Journal of Biological Chemistry.

[107]  K. Jishage,et al.  The POU domain transcription factor Brn-2 is required for the determination of specific neuronal lineages in the hypothalamus of the mouse. , 1995, Genes & development.

[108]  P. Sawchenko,et al.  Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. , 1995, Genes & development.

[109]  D. Bennett,et al.  The POU domain transcription factor Brn-2: elevated expression in malignant melanoma and regulation of melanocyte-specific gene expression. , 1995, Oncogene.

[110]  Juli D. Klemm,et al.  Crystal structure of the Oct-1 POU domain bound to an octamer site: DNA recognition with tethered DNA-binding modules , 1994, Cell.

[111]  H. Hamada,et al.  A CNS-specific POU transcription factor, Brn-2, is required for establishing mammalian neural cell lineages , 1993, Neuron.

[112]  K. Harshman,et al.  Astrocytes and glioblastoma cells express novel octamer-DNA binding proteins distinct from the ubiquitous Oct-1 and B cell type Oct-2 proteins. , 1990, Nucleic acids research.