Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification

[1]  David A. Scott,et al.  Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells , 2014, Nature Biotechnology.

[2]  David W. Taylor,et al.  Structures of Cas9 Endonucleases Reveal RNA-Mediated Conformational Activation , 2014, Science.

[3]  J. Keith Joung,et al.  Broad Specificity Profiling of TALENs Results in Engineered Nucleases With Improved DNA Cleavage Specificity , 2014, Nature Methods.

[4]  Feng Zhang,et al.  Crystal Structure of Cas9 in Complex with Guide RNA and Target DNA , 2014, Cell.

[5]  J. Keith Joung,et al.  Improving CRISPR-Cas nuclease specificity using truncated guide RNAs , 2014, Nature Biotechnology.

[6]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[7]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[8]  Prashant Mali,et al.  Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing , 2013, Nature Methods.

[9]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[10]  Bradley E. Bernstein,et al.  In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites , 2013, Nucleic acids research.

[11]  David R. Liu,et al.  High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity , 2013, Nature Biotechnology.

[12]  Gang Bao,et al.  CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity , 2013, Nucleic acids research.

[13]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[14]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[15]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[16]  V. Verkhusha,et al.  Near-infrared fluorescent proteins for multicolor in vivo imaging , 2013, Nature Methods.

[17]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[18]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[19]  Jiyeon Kweon,et al.  TALENs and ZFNs are associated with different mutation signatures , 2013, Nature Methods.

[20]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[21]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[22]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[23]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[24]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[25]  Y. Doyon,et al.  Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme , 2012, Genome research.

[26]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[27]  Claudio Mussolino,et al.  Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects , 2012, Nucleic acids research.

[28]  David R. Liu,et al.  Revealing Off-Target Cleavage Specificities of Zinc Finger Nucleases by In Vitro Selection , 2011, Nature Methods.

[29]  Willem P C Stemmer,et al.  A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner , 2009, Nature Biotechnology.

[30]  J. Orange,et al.  Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases , 2008, Nature Biotechnology.

[31]  A. Aggarwal,et al.  FokI requires two specific DNA sites for cleavage. , 2001, Journal of molecular biology.

[32]  Thuy D Vo,et al.  Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures , 2011, Nature Methods.

[33]  Jeffrey C. Miller,et al.  A rapid and general assay for monitoring endogenous gene modification. , 2010, Methods in molecular biology.