Wavelet-based multiscale statistical process monitoring: A literature review

Data that represent complex and multivariate processes are well known to be multiscale due to the variety of changes that could occur in a process with different localizations in time and frequency. Examples of changes may include mean shift, spikes, drifts and variance shifts all of which could occur in a process at different times and at different frequencies. Acoustic emission signals arising from machining, images representing MRI scans and musical audio signals are some examples that contain these changes and are not suited for single scale analysis. The recent literature contains several wavelet-decomposition-based multiscale process monitoring approaches including many real life process monitoring applications. These approaches are shown to be effective in handling different data types and, in concept, are likely to perform better than existing single scale approaches. There also exists a vast literature on the theory of wavelet decomposition and other statistical elements of multiscale monitoring methods, such as principal components analysis, denoising and charting. To our knowledge, no comprehensive review of the work relevant to multiscale monitoring of both univariate and multivariate processes has been presented to the literature. In this paper, over 150 both published and unpublished papers are cited for this important subject, and some extensions of the current research are also discussed.

[1]  Christos Georgakis,et al.  Disturbance detection and isolation by dynamic principal component analysis , 1995 .

[2]  A. Antoniadis Wavelets in statistics: A review , 1997 .

[3]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[4]  S. Joe Qin,et al.  Multivariate process monitoring and fault diagnosis by multi-scale PCA , 2002 .

[5]  Brani Vidakovic,et al.  Estimating the square root of a density via compactly supported wavelets , 1997 .

[6]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[7]  Y. Benjamini,et al.  Adaptive thresholding of wavelet coefficients , 1996 .

[8]  David Leporini,et al.  Bayesian wavelet denoising: Besov priors and non-Gaussian noises , 2001, Signal Process..

[9]  M. R. Reynolds,et al.  Nonparametric quality control charts based on the sign statistic , 1995 .

[10]  Prakash N. Patil,et al.  On the Choice of Smoothing Parameter, Threshold and Truncation in Nonparametric Regression by Non-linear Wavelet Methods , 1996 .

[11]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[12]  Bhavik R. Bakshi,et al.  Representation of process trends—III. Multiscale extraction of trends from process data , 1994 .

[13]  S. Efromovich Quasi-Linear Wavelet Estimation , 1999 .

[14]  Y. H. J. Au,et al.  Acoustic Emission Signal Processing , 2001 .

[15]  T. Cai Adaptive wavelet estimation : A block thresholding and oracle inequality approach , 1999 .

[16]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[17]  P. Rubel,et al.  Time-scale analysis of high-resolution signal-averaged surface ECG using wavelet transformation , 1991, [1991] Proceedings Computers in Cardiology.

[18]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[19]  Arthur B. Yeh,et al.  A multivariate exponentially weighted moving average control chart for monitoring process variability , 2003 .

[20]  A. Ikonomopoulos,et al.  Wavelet Application in Process Monitoring , 1999 .

[21]  L. Biegler,et al.  Data reconciliation and gross‐error detection for dynamic systems , 1996 .

[22]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[23]  H. Hotelling Multivariate Quality Control-illustrated by the air testing of sample bombsights , 1947 .

[24]  Jionghua Jin,et al.  Feature-preserving data compression of stamping tonnage information using wavelets , 1999 .

[25]  D. H. Besterfield Quality control , 1979 .

[26]  Vladimír Veverka A method of reconciliation of measured data with nonlinear constraints , 1992 .

[27]  E. Parzen,et al.  Data dependent wavelet thresholding in nonparametric regression with change-point applications , 1996 .

[28]  Bhavik R. Bakshi,et al.  Multiscale SPC using wavelets: Theoretical analysis and properties , 2003 .

[29]  Jose A. Romagnoli,et al.  Non-linear data reconciliation for an industrial pyrolysis reactor , 1994 .

[30]  Douglas M. Hawkins,et al.  Regression Adjustment for Variables in Multivariate Quality Control , 1993 .

[31]  Charles M. Bishop Variational principal components , 1999 .

[32]  Theodora Kourti,et al.  Multivariate SPC Methods for Process and Product Monitoring , 1996 .

[33]  P. Hall,et al.  Block threshold rules for curve estimation using kernel and wavelet methods , 1998 .

[34]  Emanuel Parzen,et al.  Change-point approach to data analytic wavelet thresholding , 1996, Stat. Comput..

[35]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[36]  V. Ravi Kumar,et al.  Simple denoising algorithm using wavelet transform , 1999, chao-dyn/9912038.

[37]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[38]  Jyh-Jen Horng Shiau,et al.  Statistical process monitoring using an empirical Bayes multivariate process control chart , 2001 .

[39]  Michael H. Neumann,et al.  Exact Risk Analysis of Wavelet Regression , 1998 .

[40]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[41]  D. Himmelblau,et al.  Sensor fault detection via multiscale analysis and nonparametric statistical inference , 1998 .

[42]  Jionghua Jin,et al.  Diagnostic Feature Extraction From Stamping Tonnage Signals Based on Design of Experiments , 2000 .

[43]  Manabu Kano,et al.  Comparison of statistical process monitoring methods: application to the Eastman challenge problem , 2000 .

[44]  Berwin A. Turlach,et al.  Performance of wavelet methods for functions with many discontinuities , 1996 .

[45]  Zohreh Azimifar,et al.  Wavelet shrinkage with correlated wavelet coefficients , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[46]  Mukund Raghavachari,et al.  Control chart based on the Hodges-Lehmann estimator , 1991 .

[47]  Thomas E. Marlin,et al.  Multivariate statistical monitoring of process operating performance , 1991 .

[48]  Michael Unser,et al.  A review of wavelets in biomedical applications , 1996, Proc. IEEE.

[49]  D. Hawkins Multivariate quality control based on regression-adjusted variables , 1991 .

[50]  B. Bakshi,et al.  A Multiscale, Bayesian and Error-In-Variables Approach for Linear Dynamic Data Rectification , 2000 .

[51]  S. Wold,et al.  Multi‐way principal components‐and PLS‐analysis , 1987 .

[52]  I. Daubechies,et al.  Wavelets on the Interval and Fast Wavelet Transforms , 1993 .

[53]  R. Nowak,et al.  Bayesian wavelet-based signal estimation using non-informative priors , 1998, Conference Record of Thirty-Second Asilomar Conference on Signals, Systems and Computers (Cat. No.98CH36284).

[54]  Dong-Yeon Cho,et al.  Continuous estimation of distribution algorithms with probabilistic principal component analysis , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[55]  Bhavik R. Bakshi,et al.  Multiscale Methods for Denoising and Compression , 2000 .

[56]  P. V. Ramakrishna,et al.  Wavelet based image denoising: VQ-Bayesian technique , 1999 .

[57]  Yazhen Wang Jump and sharp cusp detection by wavelets , 1995 .

[58]  L. Lasdon,et al.  Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques , 1992 .

[59]  Thomas W. Parks,et al.  A translation-invariant wavelet representation algorithm with applications , 1996, IEEE Trans. Signal Process..

[60]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[61]  K. C. Chou,et al.  Multiscale recursive estimation, data fusion, and regularization , 1994, IEEE Trans. Autom. Control..

[62]  S. Joe Qin,et al.  Subspace approach to multidimensional fault identification and reconstruction , 1998 .

[63]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[64]  Hongwei Tong,et al.  Detection of gross erros in data reconciliation by principal component analysis , 1995 .

[65]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[66]  Neil H. Timm,et al.  Multivariate Quality Control Using Finite Intersection Tests , 1996 .

[67]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[68]  I. Johnstone,et al.  Density estimation by wavelet thresholding , 1996 .

[69]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[70]  K. Tsui,et al.  Identification and Quantification in Multivariate Quality Control Problems , 1994 .

[71]  Douglas C. Montgomery,et al.  A review of multivariate control charts , 1995 .

[72]  W. Staszewski,et al.  Wavelet Signal Processing of Acoustic Emission Data , 2001 .

[73]  Charles W. Champ,et al.  A multivariate exponentially weighted moving average control chart , 1992 .

[74]  Y. Benjamini,et al.  Thresholding of Wavelet Coefficients as Multiple Hypotheses Testing Procedure , 1995 .

[75]  James M. Lucas,et al.  Combined Shewhart-CUSUM Quality Control Schemes , 1982 .

[76]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development, 2, an integrated framework and its application , 1999 .

[77]  Bhavik R. Bakshi,et al.  Art-2 and multiscale art-2 for on-line process fault detection - Validation via industrial case studies and Monte Carlo simulation , 2002, Annu. Rev. Control..

[78]  G. Stephanopoulos,et al.  Representation of process trends—Part I. A formal representation framework , 1990 .

[79]  I. Johnstone,et al.  Ideal denoising in an orthonormal basis chosen from a library of bases , 1994 .

[80]  Jose A. Romagnoli,et al.  Wavelet‐based density estimation and application to process monitoring , 1997 .

[81]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[82]  Xiaoli Li,et al.  A brief review: acoustic emission method for tool wear monitoring during turning , 2002 .

[83]  J. A. López del Val,et al.  Principal Components Analysis , 2018, Applied Univariate, Bivariate, and Multivariate Statistics Using Python.

[84]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[85]  David L. Donoho,et al.  Denoising and robust nonlinear wavelet analysis , 1994, Defense, Security, and Sensing.

[86]  Prem K. Goel,et al.  Multiscale Bayesian rectification of data from linear steady-state and dynamic systems without accurate models , 2001 .

[87]  G. Nason Wavelet Shrinkage using Cross-validation , 1996 .

[88]  A. Simoglou,et al.  Dynamic multivariate statistical process control using partial least squares and canonical variate analysis , 1999 .

[89]  D. Paul Detection of change in processes using wavelets , 1994, Proceedings of IEEE-SP International Symposium on Time- Frequency and Time-Scale Analysis.

[90]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[91]  Stéphane Mallat,et al.  Singularity detection and processing with wavelets , 1992, IEEE Trans. Inf. Theory.

[92]  A. Antoniadis Smoothing Noisy Data with Tapered Coiflets Series , 1996 .

[93]  George C. Runger,et al.  Model-Based and Model-Free Control of Autocorrelated Processes , 1995 .

[94]  J. Ledolter,et al.  A Control Chart Based on Ranks , 1991 .

[95]  P. Miller,et al.  Contribution plots: a missing link in multivariate quality control , 1998 .

[96]  Adhemar Bultheel,et al.  Generalized cross validation for wavelet thresholding , 1997, Signal Process..

[97]  Bhupinder S. Dayal,et al.  Recursive exponentially weighted PLS and its applications to adaptive control and prediction , 1997 .

[98]  B. Bakshi,et al.  On-line multiscale filtering of random and gross errors without process models , 1999 .

[99]  T. McAvoy,et al.  Nonlinear principal component analysis—Based on principal curves and neural networks , 1996 .

[100]  Guy P. Nason,et al.  On choosing a non-integer resolution level when using wavelet methods , 1997 .

[101]  G. Qi Wavelet-based AE characterization of composite materials , 2000 .

[102]  G. T. Warhola,et al.  DE-NOISING USING WAVELETS AND CROSS VALIDATION , 1995 .

[103]  Lloyd P. M. Johnston,et al.  Maximum likelihood data rectification: Steady-state systems , 1995 .

[104]  Douglas C. Montgomery,et al.  Statistical process monitoring with principal components , 1996 .

[105]  L. Biegler,et al.  Simultaneous strategies for data reconciliation and gross error detection of nonlinear systems , 1991 .

[106]  Svante Wold,et al.  Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection , 1996 .

[107]  C. McGreavy,et al.  Application of wavelets and neural networks to diagnostic system development , 1999 .

[108]  Frank B. Alt Multivariate Quality Control , 1984 .

[109]  A. Bruce,et al.  WAVESHRINK WITH FIRM SHRINKAGE , 1997 .

[110]  A. Tsybakov,et al.  Wavelets, approximation, and statistical applications , 1998 .

[111]  John F. MacGregor,et al.  Process monitoring and diagnosis by multiblock PLS methods , 1994 .

[112]  B. Bakshi Multiscale PCA with application to multivariate statistical process monitoring , 1998 .

[113]  S. H. Fourie,et al.  Advanced process monitoring using an on-line non-linear multiscale principal component analysis methodology , 2000 .

[114]  B. Vidakovic,et al.  On time-dependent wavelet denoising , 1998, IEEE Trans. Signal Process..

[115]  F. Chu,et al.  Experimental determination of the rubbing location by means of acoustic emission and wavelet transform , 2001 .

[116]  I. Johnstone,et al.  Ideal spatial adaptation by wavelet shrinkage , 1994 .

[117]  D. Donoho,et al.  Translation-Invariant DeNoising , 1995 .

[118]  Ali Cinar,et al.  Statistical process monitoring and disturbance diagnosis in multivariable continuous processes , 1996 .

[119]  H. W. Sorenson,et al.  Kalman filtering : theory and application , 1985 .

[120]  Michael H. Neumann,et al.  Wavelet Thresholding: Beyond the Gaussian I.I.D. Situation , 1995 .

[121]  John C. Young,et al.  A Practical Approach for Interpreting Multivariate T2 Control Chart Signals , 1997 .

[122]  Kai Schneider,et al.  Wavelet Smoothing of Evolutionary Spectra by Non-Linear Thresholding , 1996 .

[123]  Bhavik R. Bakshi,et al.  Art-2 and multiscale art-2 for on-line process fault detection — Validation via industrial case studies and Monte Carlo simulation , 2001 .

[124]  R. Crosier Multivariate generalizations of cumulative sum quality-control schemes , 1988 .

[125]  Manabu Kano,et al.  Contribution Plots for Fault Identication Based on the Dissimilarity of Process Data , 2000 .

[126]  George C. Runger,et al.  Comparison of multivariate CUSUM charts , 1990 .

[127]  Thomas F. Edgar,et al.  Robust data reconciliation and gross error detection: The modified MIMT using NLP , 1997 .

[128]  A. J. Morris,et al.  Confidence limits for contribution plots , 2000 .

[129]  David M. Himmelblau,et al.  Sensor Fault Detection via Multiscale Analysis and Dynamic PCA , 1999 .

[130]  A. J. Morris,et al.  Wavelets and non-linear principal components analysis for process monitoring , 1999 .

[131]  George C. Runger,et al.  Projections and the U(2) Multivariate Control Chart , 1996 .

[132]  Prem K. Goel,et al.  Process modeling by Bayesian latent variable regression , 2002 .

[133]  G. Dunteman Principal Components Analysis , 1989 .

[134]  Prem K. Goel,et al.  Improving principal component analysis using Bayesian estimation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[135]  Bhavik R. Bakshi,et al.  Multiscale analysis and modeling using wavelets , 1999 .

[136]  Yihui Jin,et al.  Application of wavelet transform to process operating region recognition , 2000 .

[137]  James F. Davis,et al.  Clustering in wavelet domain: A multiresolution ART network for anomaly detection , 2004 .

[138]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[139]  Dale E. Seborg,et al.  Dynamic data rectification using the expectation maximization algorithm , 2000 .

[140]  Johannes Ledolter,et al.  A new nonparametric quality control technique , 1992 .

[141]  Hong-Ye Gao,et al.  Applied wavelet analysis with S-plus , 1996 .

[142]  Bhavik R. Bakshi,et al.  Representation of process trends—IV. Induction of real-time patterns from operating data for diagnosis and supervisory control , 1994 .

[143]  Beata Walczak,et al.  Wavelets in Chemistry , 2001 .

[144]  David M. Himmelblau,et al.  Dynamic data rectification by recurrent neural networks vs. Traditional methods , 1994 .

[145]  Yrjö Neuvo,et al.  FIR-median hybrid filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[146]  Arun K. Sikder,et al.  Wavelet-based identification of delamination defect in CMP (Cu-low k) using nonstationary acoustic emission signal , 2003 .

[147]  C. M. Crowe,et al.  Observability and redundancy of process data for steady state reconciliation , 1989 .

[148]  Xiaoli Li Real-time detection of the breakage of small diameter drills with wavelet transform , 1998 .

[149]  T. Tony Cai,et al.  WAVELET SHRINKAGE FOR NONEQUISPACED SAMPLES , 1998 .

[150]  C Rosen,et al.  Multivariate and multiscale monitoring of wastewater treatment operation. , 2001, Water research.

[151]  Suganda Jutamulia,et al.  Wavelet transform and its use in edge detection , 2000, Optics and Optoelectronic Inspection and Control.

[152]  Ibrahim N. Tansel,et al.  Detection of tool failure in end milling with wavelet transformations and neural networks (WT-NN) , 1995 .

[153]  Sauro Pierucci,et al.  On-line data reconciliation and optimisation: Refinery applications , 1997 .

[154]  A. J. Morris,et al.  Multivariate statistical process control of an industrial fluidised-bed reactor , 2000 .

[155]  Bhavik R. Bakshi,et al.  Chapter 17 - Multiscale Statistical Process Control and Model-Based Denoising , 2000 .

[156]  T. Sapatinas,et al.  Wavelet Analysis and its Statistical Applications , 2000 .