Complex quantum networks as structured environments: engineering and probing

We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.

[1]  R. Rubin,et al.  MOMENTUM AUTOCORRELATION FUNCTIONS AND ENERGY TRANSPORT IN HARMONIC CRYSTALS CONTAINING ISOTOPIC DEFECTS , 1963 .

[2]  N. Higham Computing the polar decomposition with applications , 1986 .

[3]  U. Weiss Quantum Dissipative Systems , 1993 .

[4]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[5]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[6]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[7]  J. Piilo,et al.  Simulating quantum Brownian motion with single trapped ions , 2003, quant-ph/0307231.

[8]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[9]  Peter Hänggi,et al.  Gauging a quantum heat bath with dissipative Landau-Zener transitions. , 2006, Physical review letters.

[10]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[11]  Michael J. Biercuk,et al.  Optimized dynamical decoupling in a model quantum memory , 2008, Nature.

[12]  Koji Maruyama,et al.  Indirect Hamiltonian identification through a small gateway , 2009, 0903.0612.

[13]  Javier Prior,et al.  Efficient simulation of strong system-environment interactions. , 2010, Physical review letters.

[14]  Martin B. Plenio,et al.  Exact mapping between system-reservoir quantum models and semi-infinite discrete chains using orthogonal polynomials , 2010, 1006.4507.

[15]  O. Gühne,et al.  Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.

[16]  Keith H. Hughes,et al.  Effective spectral densities for system-environment dynamics at conical intersections: S2-S1 conical intersection in pyrazine , 2010 .

[17]  Franco Nori,et al.  Indirect quantum tomography of quadratic Hamiltonians , 2010, 1004.5018.

[18]  B. Vacchini,et al.  Communication: Universal Markovian reduction of Brownian particle dynamics. , 2010, The Journal of chemical physics.

[19]  P. Zoller,et al.  Continuous mode cooling and phonon routers for phononic quantum networks , 2012, 1205.7008.

[20]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[21]  Alessandro Ferraro,et al.  Reconstructing the quantum state of oscillator networks with a single qubit , 2011, 1109.2022.

[22]  A Rudra,et al.  1D and 2D arrays of coupled photonic crystal cavities with a site-controlled quantum wire light source. , 2013, Optics express.

[23]  Naoki Yamamoto,et al.  Structure identification and state initialization of spin networks with limited access , 2013 .

[24]  S. Huelga,et al.  Vibrations, quanta and biology , 2013, 1307.3530.

[25]  Gaoxiang Li,et al.  Achieving steady-state entanglement of remote micromechanical oscillators by cascaded cavity coupling , 2012, 1210.2345.

[26]  Sabrina Maniscalco,et al.  Non-Markovian probes in ultracold gases , 2013, 1301.0416.

[27]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[28]  Ville Bergholm,et al.  Community Detection in Quantum Complex Networks , 2013, 1310.6638.

[29]  Paul Brumer,et al.  Direct experimental determination of spectral densities of molecular complexes. , 2014, The Journal of chemical physics.

[30]  Ruggero Vasile,et al.  Spectral origin of non-Markovian open-system dynamics: A finite harmonic model without approximations , 2014 .

[31]  Giulia Ferrini,et al.  Full characterization of a highly multimode entangled state embedded in an optical frequency comb using pulse shaping , 2014, 1401.4867.

[32]  Masoud Mohseni,et al.  Quantum Effects in Biology , 2019, Optics and Photonics News.

[33]  T Zelevinsky,et al.  Thermometry via light shifts in optical lattices. , 2014, Physical review letters.

[34]  Francesco Ciccarello,et al.  Waveguide-QED-based measurement of a reservoir spectral density , 2014, 1407.2182.

[35]  J. Eisert,et al.  Observation of non-Markovian micromechanical Brownian motion , 2013, Nature Communications.