Catalytic Role of the Substrate Defines Specificity of Therapeutic l-Asparaginase.

[1]  D. Rogers,et al.  Dispersion- and Exchange-Corrected Density Functional Theory for Sodium Ion Hydration. , 2015, Journal of chemical theory and computation.

[2]  J. Weinstein,et al.  Targeted metabolomic analysis of amino acid response to L-asparaginase in adherent cells , 2014, Metabolomics.

[3]  J. Weinstein,et al.  The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. , 2013, Blood.

[4]  P. Fernandes,et al.  Unraveling the enigmatic mechanism of L-asparaginase II with QM/QM calculations. , 2013, Journal of the American Chemical Society.

[5]  Jeng-Da Chai,et al.  Long-Range Corrected Hybrid Density Functionals with Improved Dispersion Corrections. , 2012, Journal of chemical theory and computation.

[6]  P. Carloni,et al.  Local Fluctuations and Conformational Transitions in Proteins. , 2012, Journal of chemical theory and computation.

[7]  J. Helliwell,et al.  Protonation-state determination in proteins using high-resolution X-ray crystallography: effects of resolution and completeness. , 2012, Acta crystallographica. Section D, Biological crystallography.

[8]  K. Musier-Forsyth,et al.  Substrate and enzyme functional groups contribute to translational quality control by bacterial prolyl-tRNA synthetase. , 2012, The journal of physical chemistry. B.

[9]  Jeng-Da Chai,et al.  Long-range corrected hybrid meta-generalized-gradient approximations with dispersion corrections. , 2012, Journal of Chemical Physics.

[10]  Jan H. Jensen,et al.  Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values. , 2011, Journal of chemical theory and computation.

[11]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[12]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[13]  G. Robert,et al.  Targeting autophagy to fight hematopoietic malignancies , 2010, Cell cycle.

[14]  Kyuho Lee,et al.  Higher-accuracy van der Waals density functional , 2010, 1003.5255.

[15]  M. Manns,et al.  Changes in plasma amino acids during extracorporeal liver support by fractionated plasma separation and adsorption. , 2010, Artificial organs.

[16]  D. Bowler,et al.  Chemical accuracy for the van der Waals density functional , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  L. Chiarelli,et al.  Helicobacter pyloril-asparaginase: a promising chemotherapeutic agent. , 2008, Biochemical and biophysical research communications.

[18]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[19]  Edward G Hohenstein,et al.  Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. , 2008, Journal of chemical theory and computation.

[20]  Jan H. Jensen,et al.  Very fast prediction and rationalization of pKa values for protein–ligand complexes , 2008, Proteins.

[21]  J. Weinstein,et al.  Asparagine synthetase is a predictive biomarker of l-asparaginase activity in ovarian cancer cell lines , 2008, Molecular Cancer Therapeutics.

[22]  S. Rempe,et al.  On "the complete basis set limit" and plane-wave methods in first-principles simulations of water. , 2008, Physical chemistry chemical physics : PCCP.

[23]  S. Nikonov,et al.  Three-dimensional structures of L-asparaginase from Erwinia carotovora complexed with aspartate and glutamate. , 2008, Acta crystallographica. Section D, Biological crystallography.

[24]  T. Anthony,et al.  Alanyl-glutamine consumption modifies the suppressive effect of L-asparaginase on lymphocyte populations in mice. , 2008, The Journal of nutrition.

[25]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[26]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[27]  A. Murdoch Cloning , 2007, Ethics & Medics.

[28]  R. Heath,et al.  Crystal structure and allosteric regulation of the cytoplasmic Escherichia coli L-asparaginase I. , 2007, Journal of molecular biology.

[29]  D. Durden,et al.  Role of Glutamine Depletion in Directing Tissue-specific Nutrient Stress Responses to L-Asparaginase* , 2006, Journal of Biological Chemistry.

[30]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[31]  Jan H. Jensen,et al.  Very fast empirical prediction and rationalization of protein pKa values , 2005, Proteins.

[32]  Georgia A. Kotzia,et al.  Cloning, expression and characterisation of Erwinia carotovora L-asparaginase. , 2005, Journal of biotechnology.

[33]  D. Wheatley Arginine deprivation and metabolomics: important aspects of intermediary metabolism in relation to the differential sensitivity of normal and tumour cells. , 2005, Seminars in cancer biology.

[34]  J. Kress,et al.  Ab initio molecular dynamics and quasichemical study of H+(aq). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[36]  Alexander D. MacKerell,et al.  Extending the treatment of backbone energetics in protein force fields: Limitations of gas‐phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations , 2004, J. Comput. Chem..

[37]  Weitao Yang,et al.  The protein backbone makes important contributions to 4-oxalocrotonate tautomerase enzyme catalysis: understanding from theory and experiment. , 2004, Biochemistry.

[38]  N. Sokolov,et al.  One‐step purification and kinetic properties of the recombinant l‐asparaginase from Erwinia carotovora , 2004, Biotechnology and applied biochemistry.

[39]  P. Gaynon,et al.  Changes of amino acid serum levels in pediatric patients with higher-risk acute lymphoblastic leukemia (CCG-1961). , 2004, In vivo.

[40]  Igor Polikarpov,et al.  Structural comparison of Escherichia coli L-asparaginase in two monoclinic space groups. , 2003, Acta crystallographica. Section D, Biological crystallography.

[41]  A. Wlodawer,et al.  Do bacterial L-asparaginases utilize a catalytic triad Thr-Tyr-Glu? , 2001, Biochimica et biophysica acta.

[42]  M. Kilberg,et al.  Asparagine synthetase expression alone is sufficient to induce l-asparaginase resistance in MOLT-4 human leukaemia cells. , 2001, The Biochemical journal.

[43]  M. Cohen,et al.  Outcomes of treatment of children and adolescents with recurrent non-Hodgkin's lymphoma and Hodgkin's disease with dexamethasone, etoposide, cisplatin, cytarabine, and l-asparaginase, maintenance chemotherapy, and transplantation: Children's Cancer Group Study CCG-5912. , 2001, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[44]  A Wlodawer,et al.  Structural basis for the activity and substrate specificity of Erwinia chrysanthemi L-asparaginase. , 2001, Biochemistry.

[45]  R. Gelber,et al.  Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. , 2001, Blood.

[46]  M. Bocola,et al.  Dynamics of a mobile loop at the active site of Escherichia coli asparaginase. , 2000, Biochimica et biophysica acta.

[47]  L. Lebioda,et al.  Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. , 2000, Biochemistry.

[48]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[49]  H. Müller,et al.  Use of L-asparaginase in childhood ALL. , 1998, Critical reviews in oncology/hematology.

[50]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[51]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[54]  A. Wlodawer,et al.  Crystal structure and amino acid sequence of Wolinella succinogenes L-asparaginase. , 1996, European journal of biochemistry.

[55]  A. Wlodawer,et al.  A covalently bound catalytic intermediate in Escherichia coli asparaginase : Crystal structure of a Thr‐89‐Val mutant , 1996, FEBS letters.

[56]  B. Mannervik,et al.  Involvement of the carboxyl groups of glutathione in the catalytic mechanism of human glutathione transferase A1-1. , 1996, Biochemistry.

[57]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[58]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[59]  C. Derst,et al.  States and functions of tyrosine residues in Escherichia coli asparaginase II. , 1994, European journal of biochemistry.

[60]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[61]  R. Chidambaram,et al.  Carboxyl group hydrogen bonding in X‐ray protein structures analysed using neutron studies on amino acids , 1993, FEBS letters.

[62]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[63]  M. Jaskólski,et al.  Crystal structure of Escherichia coli L-asparaginase, an enzyme used in cancer therapy. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[64]  C. Derst,et al.  Probing the role of threonine and serine residues of E. coli asparaginase II by site-specific mutagenesis. , 1992, Protein engineering.

[65]  I. Beacham,et al.  Site-specific mutagenesis of Escherichia coli asparaginase II. None of the three histidine residues is required for catalysis. , 1992, European journal of biochemistry.

[66]  K. Röhm,et al.  A catalytic role for threonine‐12 of E. coli asparaginase II as established by site‐directed mutagenesis , 1991, FEBS letters.

[67]  J. Ross,et al.  L-asparaginase from Erwinia carotovora. An improved recovery and purification process using affinity chromatography. , 1989, Applied biochemistry and biotechnology.

[68]  E. Roth,et al.  Asparaginase‐induced derangements of glutamine metabolism: the pathogenetic basis for some drug‐related side‐effects , 1988, European journal of clinical investigation.

[69]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[70]  A. Bendich,et al.  Enzyme-induced asparagine and glutamine depletion and immune system function. , 1983, The American journal of clinical nutrition.

[71]  R. Warrell,et al.  Clinical evaluation of succinylated Acinetobacter glutaminase-asparaginase in adult leukemia. , 1982, Cancer treatment reports.

[72]  J. Howard,et al.  L-asparaginase from Erwinia carotovora. Substrate specificity and enzymatic properties. , 1972, Journal of Biological Chemistry.

[73]  J. H. Schwartz,et al.  L-asparaginase II of Escherichia coli. Studies on the enzymatic mechanism of action. , 1971, The Journal of biological chemistry.

[74]  H. Kay,et al.  L-Asparaginase in Treatment of Acute Leukaemia and Lymphosarcoma , 1970, British medical journal.

[75]  L. Chiarelli,et al.  Expanding targets for a metabolic therapy of cancer: L-asparaginase. , 2012, Recent patents on anti-cancer drug discovery.

[76]  L. Chiarelli,et al.  Expanding Targets for a Metabolic Therapy of Cancer: L-Asparaginase , 2012 .

[77]  Yan Zhao,et al.  Density Functionals for Noncovalent Interaction Energies of Biological Importance. , 2007, Journal of chemical theory and computation.

[78]  Joost VandeVondele,et al.  The influence of temperature and density functional models in ab initio molecular dynamics simulation of liquid water. , 2005, The Journal of chemical physics.

[79]  E. Panosyan,et al.  Pharmacokinetic/Pharmacodynamic Relationships of Asparaginase Formulations , 2005, Clinical pharmacokinetics.

[80]  I. Chaiken,et al.  L-Asparaginase from Erwinia carotovora , 2003 .

[81]  J. Neglia,et al.  A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. , 2002, Blood.

[82]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[83]  C. Derst,et al.  Engineering the substrate specificity of Escherichia coli asparaginase II. Selective reduction of glutaminase activity by amino acid replacements at position 248 , 2000, Protein science : a publication of the Protein Society.

[84]  Stefan Schleper Kinetische Untersuchungen und Modellstudien zur Funktion essentieller Reste im aktiven Zentrum der L-Asparaginase II aus E. coli , 1999 .

[85]  A. Becke Density-functional thermochemistry. , 1996 .

[86]  D. Bonthron L-asparaginase II of Escherichia coli K-12: cloning, mapping and sequencing of the ansB gene. , 1990, Gene.

[87]  K. Röhm,et al.  The 18O isotope effect in 13C nuclear magnetic resonance spectroscopy: mechanistic studies on asparaginase from Escherichia coli. , 1986, Archives of biochemistry and biophysics.

[88]  H. Gutfreund,et al.  Enzyme kinetics , 1975, Nature.