Ceramic electrolytes and electrochemical sensors
暂无分享,去创建一个
Sheikh A. Akbar | W. Weppner | S. Akbar | W. Weppner | C. Park | Chong-Ook Park | S. A. Akbar | C. O. Park
[1] Christopher W. Bale,et al. K 2 CO 3 Solid Electrolyte as a CO 2 Probe: Decomposition Measurements of CaCO3 , 1984 .
[2] Norio Miura,et al. Development of high-performance solid-electrolyte sensors for NO and NO2 , 1993 .
[3] C. F. Curtiss,et al. Molecular Theory Of Gases And Liquids , 1954 .
[4] Hiroshi Osanai,et al. Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte , 1989 .
[5] K. Nuri,et al. Gas-polarographic multifunctional sensor: oxygen-humidity sensor , 1989 .
[6] R. W. Taylor,et al. The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate from Measurements Made with Galvanic Cells Involving Solid Electrolytes , 1964 .
[7] Toshio Maruyama,et al. Potentiometric gas sensor for carbon dioxide using solid electrolytes , 1987 .
[8] F. Henn,et al. Characterization of Gd, Yb and Nd doped barium cerates as proton conductors , 1993 .
[9] Takashi Takeuchi,et al. Voltage Step Characteristics of Oxygen Concentration Cell Sensors for Nonequilibrium Gas Mixtures , 1988 .
[10] Charles N. Satterfield,et al. Mass transfer in heterogeneous catalysis , 1969 .
[11] F. A. Kröger. Electronic Conductivity of Calcia‐Stabilized Zirconia , 1966 .
[12] K. Hever. A Solid‐State Electrochemical Cell Based on Ion Conductive Ceramics , 1968 .
[13] G. Scatchard. Ion Exchanger Electrodes , 1953 .
[14] R. Rapp,et al. Mixed Conduction in Zr0.85 Ca0.15 O 1.85 and Th0.85 Y 0.15 O 1.925 Solid Electrolytes , 1967 .
[15] J. Anderson,et al. Steady‐State Characteristics of Oxygen Concentration Cell Sensors Subjected to Nonequilibrium Gas Mixtures , 1981 .
[16] T. Etsell,et al. Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells , 1971 .
[17] R. Slade,et al. Investigation of protonic conduction in Yb- and Y-doped barium zirconates , 1995 .
[18] J. M. Short,et al. CONFIRMATION OF DEFECT CHARACTER IN CALCIUM FLUORIDE—YTTRIUM FLUORIDE CRYSTALLINE SOLUTIONS1 , 1963 .
[19] S. Bhoga,et al. An investigation of Na2CO3–ABO3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application , 1999 .
[20] D. A. Young. Thermodynamics of nuclear materials International atomic energy agency, Vienna, proceedings series, 808 pages, 1962, 66s, $ 11.00, NF 44, DM 38.50 , 1963 .
[21] J. T. Kummer,et al. Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .
[22] F. O. Koenig. On Quasi-reversible Conduction and Galvanic Cells with Liquid-Liquid Junctions. , 1940 .
[23] R. Jackson,et al. Transport in porous catalysts , 1977 .
[24] C. B. Alcock. Electromotive force measurements in high-temperature systems : proceedings of a symposium held by the Nuffield Research Group, Imperial College, London, 13 and 14 April 1967 , 1968 .
[25] R. W. Ure,et al. Ionic Conductivity of Calcium Fluoride Crystals , 1957 .
[26] T. Hibino,et al. Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method , 1992 .
[27] John B. Goodenough,et al. Fast Na+-ion transport in skeleton structures , 1976 .
[28] Kouhei Ito,et al. Protonic Conduction Domain of Indium‐Doped Calcium Zirconate , 1995 .
[29] N. Yamazoe,et al. High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode , 1992 .
[30] Y. Sadaoka,et al. Ionic conductivity and sinterability of lithium titanium phosphate system , 1990 .
[31] B. Santo,et al. Solid State , 2012 .
[32] M. Holzinger,et al. Fast CO2-selective potentiometric sensor with open reference electrode , 1996 .
[33] D. Raleigh. High-temperature hole conductivity in silver bromide , 1965 .
[34] M. Gauthier,et al. Solid‐State Detectors for the Potentiometric Determination of Gaseous Oxides I . Measurement in Air , 1977 .
[35] J. Binner,et al. Structure, properties and production of β-alumina , 1984 .
[36] A. Taylor,et al. Lattice Disorder in Some CaF2‐Type Crystals , 1966 .
[37] J. Patterson. Conduction Domains for Solid Electrolytes , 1971 .
[38] Takashi Hibino,et al. Protonic conduction in calcium, strontium and barium zirconates , 1993 .
[39] T. Ohashi,et al. Proton conductors of oxide and their application to research into metal-hydrogen systems , 1995 .
[40] K. R. Carduner,et al. A proportional air-fuel ratio zirconia oxygen sensor , 1993 .
[41] P. Delahay,et al. Advances in Electrochemistry and Electrochemical Engineering , 1964 .
[42] H. Näfe,et al. How to check the validity of Nernst's law in a potentiometric solid electrolyte galvanic cell , 1998 .
[43] Meilin Liu,et al. A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane , 2001 .
[44] C. Wagner. Über den Mechanismus der elektrischen Stromleitung im Nernststift , 1943, Naturwissenschaften.
[45] Wolfgang Göpel,et al. Carbonate based CO2 sensors with high performance , 1996 .
[46] E. Zintl,et al. Fluoritgitter mit leeren Anionenplätzen , 1939 .