Ceramic electrolytes and electrochemical sensors

The electrochemical method involving solid electrolytes has been known as a selective and an accurate way of sensing chemical species in the environment and even in liquid metal for some time. The most successful among the electrochemical sensors are the emission control sensor (λ-sensor) for the automobile engine and the oxygen sensor used in steelmaking, both made of stabilized zirconia. This article presents an overview of basic principles of various types of electrochemical sensors including active (potentiometric) and passive (amperometric) sensors. Recent advances in oxygen (O2), carbon dioxide (CO2) and hydrogen (H2) sensors are also presented.

[1]  Christopher W. Bale,et al.  K 2 CO 3 Solid Electrolyte as a CO 2 Probe: Decomposition Measurements of CaCO3 , 1984 .

[2]  Norio Miura,et al.  Development of high-performance solid-electrolyte sensors for NO and NO2 , 1993 .

[3]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[4]  Hiroshi Osanai,et al.  Gas Polarographic Oxygen Sensor Using an Oxygen/Zirconia Electrolyte , 1989 .

[5]  K. Nuri,et al.  Gas-polarographic multifunctional sensor: oxygen-humidity sensor , 1989 .

[6]  R. W. Taylor,et al.  The Free Energy of Formation of Some Titanates, Silicates, and Magnesium Aluminate from Measurements Made with Galvanic Cells Involving Solid Electrolytes , 1964 .

[7]  Toshio Maruyama,et al.  Potentiometric gas sensor for carbon dioxide using solid electrolytes , 1987 .

[8]  F. Henn,et al.  Characterization of Gd, Yb and Nd doped barium cerates as proton conductors , 1993 .

[9]  Takashi Takeuchi,et al.  Voltage Step Characteristics of Oxygen Concentration Cell Sensors for Nonequilibrium Gas Mixtures , 1988 .

[10]  Charles N. Satterfield,et al.  Mass transfer in heterogeneous catalysis , 1969 .

[11]  F. A. Kröger Electronic Conductivity of Calcia‐Stabilized Zirconia , 1966 .

[12]  K. Hever A Solid‐State Electrochemical Cell Based on Ion Conductive Ceramics , 1968 .

[13]  G. Scatchard Ion Exchanger Electrodes , 1953 .

[14]  R. Rapp,et al.  Mixed Conduction in Zr0.85 Ca0.15 O 1.85 and Th0.85 Y 0.15 O 1.925 Solid Electrolytes , 1967 .

[15]  J. Anderson,et al.  Steady‐State Characteristics of Oxygen Concentration Cell Sensors Subjected to Nonequilibrium Gas Mixtures , 1981 .

[16]  T. Etsell,et al.  Overpotential Behavior of Stabilized Zirconia Solid Electrolyte Fuel Cells , 1971 .

[17]  R. Slade,et al.  Investigation of protonic conduction in Yb- and Y-doped barium zirconates , 1995 .

[18]  J. M. Short,et al.  CONFIRMATION OF DEFECT CHARACTER IN CALCIUM FLUORIDE—YTTRIUM FLUORIDE CRYSTALLINE SOLUTIONS1 , 1963 .

[19]  S. Bhoga,et al.  An investigation of Na2CO3–ABO3 (A=Li/K/Ba and B=Nb/Ti) heterogeneous solid electrolyte systems for electrochemical CO2 gas sensor application , 1999 .

[20]  D. A. Young Thermodynamics of nuclear materials International atomic energy agency, Vienna, proceedings series, 808 pages, 1962, 66s, $ 11.00, NF 44, DM 38.50 , 1963 .

[21]  J. T. Kummer,et al.  Ion exchange properties of and rates of ionic diffusion in beta-alumina , 1967 .

[22]  F. O. Koenig On Quasi-reversible Conduction and Galvanic Cells with Liquid-Liquid Junctions. , 1940 .

[23]  R. Jackson,et al.  Transport in porous catalysts , 1977 .

[24]  C. B. Alcock Electromotive force measurements in high-temperature systems : proceedings of a symposium held by the Nuffield Research Group, Imperial College, London, 13 and 14 April 1967 , 1968 .

[25]  R. W. Ure,et al.  Ionic Conductivity of Calcium Fluoride Crystals , 1957 .

[26]  T. Hibino,et al.  Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method , 1992 .

[27]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[28]  Kouhei Ito,et al.  Protonic Conduction Domain of Indium‐Doped Calcium Zirconate , 1995 .

[29]  N. Yamazoe,et al.  High-performance solid-electrolyte carbon dioxide sensor with a binary carbonate electrode , 1992 .

[30]  Y. Sadaoka,et al.  Ionic conductivity and sinterability of lithium titanium phosphate system , 1990 .

[31]  B. Santo,et al.  Solid State , 2012 .

[32]  M. Holzinger,et al.  Fast CO2-selective potentiometric sensor with open reference electrode , 1996 .

[33]  D. Raleigh High-temperature hole conductivity in silver bromide , 1965 .

[34]  M. Gauthier,et al.  Solid‐State Detectors for the Potentiometric Determination of Gaseous Oxides I . Measurement in Air , 1977 .

[35]  J. Binner,et al.  Structure, properties and production of β-alumina , 1984 .

[36]  A. Taylor,et al.  Lattice Disorder in Some CaF2‐Type Crystals , 1966 .

[37]  J. Patterson Conduction Domains for Solid Electrolytes , 1971 .

[38]  Takashi Hibino,et al.  Protonic conduction in calcium, strontium and barium zirconates , 1993 .

[39]  T. Ohashi,et al.  Proton conductors of oxide and their application to research into metal-hydrogen systems , 1995 .

[40]  K. R. Carduner,et al.  A proportional air-fuel ratio zirconia oxygen sensor , 1993 .

[41]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .

[42]  H. Näfe,et al.  How to check the validity of Nernst's law in a potentiometric solid electrolyte galvanic cell , 1998 .

[43]  Meilin Liu,et al.  A new type of amperometric oxygen sensor based on a mixed-conducting composite membrane , 2001 .

[44]  C. Wagner Über den Mechanismus der elektrischen Stromleitung im Nernststift , 1943, Naturwissenschaften.

[45]  Wolfgang Göpel,et al.  Carbonate based CO2 sensors with high performance , 1996 .

[46]  E. Zintl,et al.  Fluoritgitter mit leeren Anionenplätzen , 1939 .