Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy.

[1]  Hye Eun Lee,et al.  Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. , 2013, Cell metabolism.

[2]  S. Tooze,et al.  Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2 , 2013, Autophagy.

[3]  Steven B. Bradfute,et al.  TBK-1 promotes autophagy-mediated antimicrobial defense by controlling autophagosome maturation. , 2012, Immunity.

[4]  Masaaki Komatsu,et al.  Keap1 degradation by autophagy for the maintenance of redox homeostasis , 2012, Proceedings of the National Academy of Sciences.

[5]  M. Sporn,et al.  NRF2 and cancer: the good, the bad and the importance of context , 2012, Nature Reviews Cancer.

[6]  H. Aburatani,et al.  Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. , 2012, Cancer cell.

[7]  E. White Deconvoluting the context-dependent role for autophagy in cancer , 2012, Nature Reviews Cancer.

[8]  T. Soga,et al.  mTORC1 is essential for leukemia propagation but not stem cell self-renewal. , 2012, The Journal of clinical investigation.

[9]  Ruiying Zhao,et al.  KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. , 2012, Cancer cell.

[10]  N. Nukina,et al.  Serine 403 phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of ubiquitinated proteins. , 2011, Molecular cell.

[11]  Ximing J. Yang,et al.  An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. , 2011, Cancer cell.

[12]  Aleksey A. Porollo,et al.  p62 is a key regulator of nutrient sensing in the mTORC1 pathway. , 2011, Molecular cell.

[13]  D. Rubinsztein,et al.  Autophagy and Aging , 2011, Cell.

[14]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[15]  Z. Elazar,et al.  Biogenesis and cargo selectivity of autophagosomes. , 2011, Annual review of biochemistry.

[16]  Keiji Tanaka,et al.  Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells , 2011, The Journal of cell biology.

[17]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[18]  T. Lamark,et al.  Selective autophagy mediated by autophagic adapter proteins , 2011, Autophagy.

[19]  Keiji Tanaka,et al.  The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice , 2011, Nature communications.

[20]  Masayuki Yamamoto,et al.  Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution , 2011, Genes to cells : devoted to molecular & cellular mechanisms.

[21]  N. Mizushima,et al.  p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding , 2011, The Journal of cell biology.

[22]  Donna D. Zhang,et al.  Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. , 2010, Antioxidants & redox signaling.

[23]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[24]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[25]  M. McMahon,et al.  p62/SQSTM1 Is a Target Gene for Transcription Factor NRF2 and Creates a Positive Feedback Loop by Inducing Antioxidant Response Element-driven Gene Transcription* , 2010, The Journal of Biological Chemistry.

[26]  E. White,et al.  A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62 , 2010, Molecular and Cellular Biology.

[27]  Mihee M. Kim,et al.  The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 , 2010, Nature Cell Biology.

[28]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[29]  Y. Hiraoka,et al.  Artificial induction of autophagy around polystyrene beads in nonphagocytic cells , 2010, Autophagy.

[30]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[31]  Alexei Vagin,et al.  Molecular replacement with MOLREP. , 2010, Acta crystallographica. Section D, Biological crystallography.

[32]  T. Lamark,et al.  The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway1 , 2009, The Journal of Immunology.

[33]  P. Sansonetti,et al.  Shigella phagocytic vacuolar membrane remnants participate in the cellular response to pathogen invasion and are regulated by autophagy. , 2009, Cell host & microbe.

[34]  V. Deretic,et al.  Autophagy, immunity, and microbial adaptations. , 2009, Cell host & microbe.

[35]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[36]  J. Guan,et al.  Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. , 2009, Molecular biology of the cell.

[37]  M. McMahon,et al.  NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. , 2009, Trends in biochemical sciences.

[38]  Tsutomu Ohta,et al.  Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy , 2008, Proceedings of the National Academy of Sciences.

[39]  James Lowe,et al.  Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies , 2008, The Journal of Neuroscience.

[40]  J. Flores,et al.  The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. , 2008, Cancer cell.

[41]  Daniel J. Klionsky,et al.  Autophagy fights disease through cellular self-digestion , 2008, Nature.

[42]  Masaaki Komatsu,et al.  Homeostatic Levels of p62 Control Cytoplasmic Inclusion Body Formation in Autophagy-Deficient Mice , 2007, Cell.

[43]  Shyam Biswal,et al.  Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. , 2007, Annual review of pharmacology and toxicology.

[44]  Tsutomu Ohta,et al.  Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. , 2006, Molecular cell.

[45]  Terje Johansen,et al.  p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death , 2005, The Journal of cell biology.

[46]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[47]  Kurt Zatloukal,et al.  p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases. , 2002, The American journal of pathology.

[48]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[49]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[50]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .