Blind deconvolution of ultrasonic signals in nondestructive testing applications

Advanced nondestructive testing techniques use a laser to generate ultrasonic waves at the surface of a test material. An air-coupled transducer receives the ultrasound that is the convolution of the signal leaving the test material and the distortion function. Blind deconvolution methods are applied to estimate the signal leaving the material.

[1]  T. Ulrych,et al.  Analytic minimum entropy deconvolution , 1982 .

[2]  Gordon Hayward,et al.  Comparison of some non-adaptive deconvolution techniques for resolution enhancement of ultrasonic data , 1989 .

[3]  Jitendra K. Tugnait,et al.  Estimation of linear parametric models using inverse filter criteria and higher order statistics , 1993, IEEE Trans. Signal Process..

[4]  G. Hayward,et al.  A theoretical approach for inverse filter design in ultrasonic applications , 1989, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  D. Hutchins,et al.  Air-coupled piezoelectric detection of laser-generated ultrasound , 1994 .

[6]  Bernard Mulgrew,et al.  Blind equalization of nonminimum phase channels: higher order cumulant based algorithm , 1993, IEEE Trans. Signal Process..

[7]  Chong-Yung Chi,et al.  Inverse filter criteria for blind deconvolution and equalization using two cumulants , 1995, Signal Process..

[8]  Klaus Bolding Rasmussen Maximum likelihood estimation of the attenuated ultrasound pulse , 1994, IEEE Trans. Signal Process..

[9]  R. Wiggins Minimum entropy deconvolution , 1978 .

[10]  Athina P. Petropulu,et al.  Blind convolution using signal reconstruction from partial higher order cepstral information , 1993, IEEE Trans. Signal Process..

[11]  Anthony N. Sinclair,et al.  Recovery of a sparse spike time series by L1 norm deconvolution , 1994, IEEE Trans. Signal Process..

[12]  A. Walden Non-Gaussian reflectivity, entropy, and deconvolution , 1985 .