The influence of photointercalaction and photochromism effects on the photocatalytic properties of electrochemically obtained maze-like MoO3 microstructures

[1]  X. Jiao,et al.  Novel Fabrication and Enhanced Photocatalytic MB Degradation of Hierarchical Porous Monoliths of MoO3 Nanoplates , 2017, Scientific Reports.

[2]  Xuemei Zhou,et al.  Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocatalytic Centers into TiO2 Nanotubes , 2017, 2004.05011.

[3]  A. Lisowska-Oleksiak,et al.  Photocatalytical properties of maze-like MoO3 microstructures prepared by anodization of Mo plate , 2017 .

[4]  Y. Gan,et al.  Enhanced photoelectrochemical properties and water splitting activity of self-ordered MoO3-TiO2 nanotubes , 2016 .

[5]  Bao-jun Yang,et al.  Room-temperature synthesis and solar photocatalytic performance of MoO3·0.5H2O nanorods , 2015 .

[6]  Alagarsamy Pandikumar,et al.  Potential active materials for photo-supercapacitor: A review , 2015 .

[7]  S. A. Hassanzadeh-Tabrizi,et al.  MoO3 fibers and belts: Molten salt synthesis, characterization and optical properties , 2015 .

[8]  Yi Shen,et al.  Novel coral-like hexagonal MoO3 thin films: Synthesis and photochromic properties , 2015 .

[9]  R. Amal,et al.  Influence of MoO3(110) Crystalline Plane on Its Self-Charging Photoelectrochemical Properties , 2014, Scientific Reports.

[10]  A. C. Bose,et al.  Preparation of h-MoO3 and α-MoO3 nanocrystals: comparative study on photocatalytic degradation of methylene blue under visible light irradiation. , 2013, Physical chemistry chemical physics : PCCP.

[11]  G. Hu,et al.  Preparation and optical properties of hexagonal and orthorhombic molybdenum trioxide thin films , 2013 .

[12]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[13]  A. C. Bose,et al.  Investigation on structural, thermal, optical and sensing properties of meta-stable hexagonal MoO3 nanocrystals of one dimensional structure , 2011, Beilstein journal of nanotechnology.

[14]  Jun‐Jie Zhu,et al.  Single-crystalline orthorhombic molybdenum oxide nanobelts: synthesis and photocatalytic properties , 2010 .

[15]  Yinjuan Xie,et al.  Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties , 2009 .

[16]  Y. Qian,et al.  Comparative Study on MoO3 and HxMoO3 Nanobelts: Structure and Electric Transport , 2008 .

[17]  P. Patil,et al.  Electrosynthesis of Electrochromic Molybdenum Oxide Thin Films with Rod-Like Features , 2008 .

[18]  P. Patil,et al.  Structural and optical properties of electrodeposited molybdenum oxide thin films , 2006 .

[19]  B. Kolesov Raman investigation of H2O molecule and hydroxyl groups in the channels of hemimorphite , 2006 .

[20]  O. Joo,et al.  Electrosynthesis of molybdenum oxide thin films onto stainless substrates , 2006 .

[21]  T. He,et al.  Photochromism of molybdenum oxide , 2003 .

[22]  P. Morais,et al.  Raman spectroscopy in magnetic fluids. , 2001, Biomolecular engineering.

[23]  L. Nagahara,et al.  Study of the Photochromic Properties of Amorphous MoO3 Films Using Raman Microscopy , 1995 .

[24]  R. Colton,et al.  Photochromism and electrochromism in amorphous transition metal oxide films , 1978 .

[25]  R. Colton,et al.  Electrochromism in some thin‐film transition‐metal oxides characterized by x‐ray electron spectroscopy , 1978 .