暂无分享,去创建一个
[1] H. Behnke,et al. Theorie der analytischen Funktionen einer komplexen Veränderlichen , 1965 .
[2] Technisch-Naturwissenschaftliche Fakultät,et al. Fast and Rigorous Computation of Special Functions to High Precision , 2014 .
[3] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[4] Edward W. Ng. A Comparison of Computational Methods and Algorithms for the Complex Gamma Function , 1975, TOMS.
[5] Richard P. Brent,et al. Multiple-precision zero-finding methods and the complexity of elementary function evaluation , 1975, ArXiv.
[6] Richard P. Brent,et al. Fast computation of Bernoulli, Tangent and Secant numbers , 2011, ArXiv.
[7] Warren D. Smith. The Gamma function revisited , 2006 .
[8] Éric Schost,et al. On the evaluation of some sparse polynomials , 2017, Math. Comput..
[9] D. Owen. Handbook of Mathematical Functions with Formulas , 1965 .
[10] Comments on "Exactification of Stirling's approximation for the logarithm of the gamma function" , 2014, 1406.1320.
[11] Jean-Michel Muller,et al. Modern Computer Arithmetic , 2016, Computer.
[12] Richard P. Brent,et al. Fast Multiple-Precision Evaluation of Elementary Functions , 1976, JACM.
[13] Kurt Siegfried Kölbig,et al. Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. , 1984 .
[14] Jonathan M. Borwein,et al. Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind , 1992 .
[15] Paul Zimmermann,et al. Accuracy of Mathematical Functions in Single, Double, Extended Double and Quadruple Precision , 2021 .
[16] J. Wrench,et al. Concerning Two Series for the Gamma Function , 1968 .
[17] M. Hussein,et al. New Asymptotic Formulae for the Point Coulomb Phase Shift , 2011 .
[18] F. R. Villegas. Experimental Number Theory , 2007 .
[19] Joris van der Hoeven,et al. Fast Evaluation of Holonomic Functions , 1999, Theor. Comput. Sci..
[20] Jonathan M. Borwein,et al. Computational strategies for the Riemann zeta function , 2000 .
[21] C. G. van der Laan,et al. Calculation of special functions: the gamma function, the exponential integrals and error-like functions , 1984 .
[22] D. Bailey. MPFUN2020: A new thread-safe arbitrary precision package (Full Documentation) , 2021 .
[23] G. Nemes,et al. New asymptotic expansion for the Gamma function , 2010 .
[24] Ricardo P'erez-Marco. Notes on the historical bibliography of the gamma function. , 2020, 2011.12140.
[25] Jinhee Yi,et al. Theta-function identities and the explicit formulas for theta-function and their applications , 2004 .
[26] Nelson H. F. Beebe,et al. The Mathematical-Function Computation Handbook , 2017, Springer International Publishing.
[27] Peter Borwein. Reduced complexity evaluation of hypergeometric functions , 1987 .
[28] David M. Smith. Algorithm 814: Fortran 90 software for floating-point multiple precision arithmetic, gamma and related functions , 2001, TOMS.
[29] J. Spouge. Computation of the gamma, digamma, and trigamma functions , 1994 .
[30] P. Davis. Leonhard Euler's Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz , 1959 .
[31] J. Rice. On the L ∞ Walsh Arrays for Γ(x) and Erfc(x) , 1964 .
[32] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[33] Glendon Ralph Pugh. AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .
[34] R. Brent. ON THE ACCURACY OF ASYMPTOTIC APPROXIMATIONS TO THE LOG-GAMMA AND RIEMANN–SIEGEL THETA FUNCTIONS , 2016, Journal of the Australian Mathematical Society.
[35] Matthew F. Causley,et al. The gamma function via interpolation , 2021, Numerical Algorithms.
[36] D. E. G. Hare,et al. Computing the Principal Branch of log-Gamma , 1997, J. Algorithms.
[37] David Harvey,et al. A multimodular algorithm for computing Bernoulli numbers , 2008, Math. Comput..
[38] F. Olver. Asymptotics and Special Functions , 1974 .
[39] G. Nemes. Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[40] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[41] E. Salamin,et al. Computation of π Using Arithmetic-Geometric Mean , 1976 .
[42] Christoph Quirin Lauter,et al. Metalibm: A Mathematical Functions Code Generator , 2014, ICMS.
[43] S. Chowla,et al. An "exact" formula for the m-th Bernoulli number , 1972 .
[44] Fredrik Johansson,et al. A bound for the error term in the Brent-McMillan algorithm , 2013, Math. Comput..
[45] Bruce W. Char,et al. On Stieltjes’ continued fraction for the gamma function , 1980 .
[46] Cetin Hakimoglu. An Algorithm for the Derivation of Rapidly Converging Infinite Series for Universal Mathematical Constants , 2009, SSRN Electronic Journal.
[47] Richard P. Brent,et al. Error bounds on complex floating-point multiplication , 2007, Math. Comput..
[48] Christoph Quirin Lauter,et al. Semi-Automatic Floating-Point Implementation of Special Functions , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.
[49] Jonathan M. Borwein,et al. Pi and the AGM , 1999 .
[50] Annie A. M. Cuyt,et al. Handbook of Continued Fractions for Special Functions , 2008 .
[51] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[52] Avraham Adler,et al. Lambert-W Function , 2015 .
[53] Lloyd N. Trefethen,et al. Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..
[54] Marc Mezzarobba,et al. Autour de l'évaluation numérique des fonctions D-finies , 2011 .
[55] William J. Cody,et al. Algorithm 715: SPECFUN–a portable FORTRAN package of special function routines and test drivers , 1993, TOMS.
[56] Weiping Wang. Unified approaches to the approximations of the gamma function , 2016 .
[57] Georges Schwachheim,et al. Algorithm 309: Gamma function with arbitrary precision , 1967, CACM.
[58] R. Spira. Calculation of the Gamma Function by Stirling's Formula , 1971 .
[59] William J. Cody,et al. Performance evaluation of programs related to the real gamma function , 1991, TOMS.
[60] Raghu Kacker,et al. Digital Library of Mathematical Functions , 2003 .
[61] H. T. Kung,et al. Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.
[62] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[63] Sven Köhler,et al. On the Stability of Fast Polynomial Arithmetic , 2008 .
[64] Shinya Miyajima. Verified computation of matrix gamma function , 2020, ArXiv.
[65] Randall A. Snyder. Double , 2020, Definitions.
[66] Sidney A. Morris. Tweaking Ramanujan's Approximation of n! , 2021, Fundamental Journal of Mathematics and Applications.
[67] Richard P. Brent,et al. Some New Algorithms for High-Precision Computation of Euler’s Constant , 1980 .
[68] Michel Waldschmidt,et al. Transcendence of Periods: The State of the Art , 2006 .
[69] Fredrik Johansson,et al. Evaluating parametric holonomic sequences using rectangular splitting , 2013, ISSAC.
[70] Martin Ziegler,et al. Fast (Multi-)Evaluation of Linearly Recurrent Sequences: Improvements and Applications , 2005, ArXiv.
[71] Fredrik Johansson,et al. Faster Arbitrary-Precision Dot Product and Matrix Multiplication , 2019, 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH).
[72] F. W. J. Olver,et al. On the Asymptotic Solution of Second-Order Differential Equations Having an Irregular Singularity of Rank One, with an Application to Whittaker Functions , 1965 .
[73] Y. Nesterenko. Modular functions and transcendence questions , 1996 .
[74] L. Fekih-Ahmed. On the Power Series Expansion of the Reciprocal Gamma Function , 2014, 1407.5983.
[75] Jonathan M. Borwein,et al. Gamma and Factorial in the Monthly , 2017, Am. Math. Mon..
[76] Leili Rafiee Sevyeri,et al. Stirling’s Original Asymptotic Series from a Formula Like One of Binet’s and its Evaluation by Sequence Acceleration , 2018, Exp. Math..
[77] Peter B. Borwein,et al. On the Complexity of Calculating Factorials , 1985, J. Algorithms.
[78] C. Mortici. A new fast asymptotic series for the gamma function , 2015 .
[79] S. Chowla,et al. On Epstein's Zeta Function (I). , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[80] THE MPFR LIBRARY: ALGORITHMS AND PROOFS , 2006 .
[81] R. Paris,et al. Exponentially-improved asymptotics for the gamma function , 1992 .
[82] R. Vidunas. EXPRESSIONS FOR VALUES OF THE GAMMA FUNCTION , 2004, math/0403510.
[83] Yudell L. Luke,et al. Evaluation of the Gamma Function by Means of Padé Approximations , 1970 .
[84] W. Boyd,et al. Gamma function asymptotics by an extension of the method of steepest descents , 1994, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[85] A. MacLeod,et al. Algorithm AS 245: A Robust and Reliable Algorithm for the Logarithm of the Gamma Function , 1989 .
[86] Staffan Wrigge,et al. High-precision values of the gamma function and of some related coefficients , 1980 .
[87] Piet Van Mieghem. Binet's factorial series and extensions to Laplace transforms , 2021 .
[88] W. J. Cody,et al. Chebyshev Approximations for the Natural Logarithm of the Gamma Function , 1967 .
[89] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[90] Chao Chen. A more accurate approximation for the gamma function , 2016 .
[91] Jean-Michel Muller,et al. Handbook of Floating-Point Arithmetic (2nd Ed.) , 2018 .
[92] Fredrik Johansson. Efficient Implementation of Elementary Functions in the Medium-Precision Range , 2015, 2015 IEEE 22nd Symposium on Computer Arithmetic.
[93] Fredrik Johansson,et al. Computing Hypergeometric Functions Rigorously , 2016, ACM Trans. Math. Softw..
[94] Joel Brewster Lewis,et al. Skyscraper Numbers , 2013, 1304.6445.
[95] D. V. Chudnovsky,et al. Approximations and complex multiplication according to Ramanujan , 2000 .
[96] Fredrik Johansson,et al. Short Addition Sequences for Theta Functions , 2016, J. Integer Seq..
[97] Amir Sadeghi,et al. Computation of matrix gamma function , 2018, BIT Numerical Mathematics.
[98] Harvey,et al. Integer multiplication in time O(n log n) , 2021, Annals of Mathematics.
[99] Peter McCullagh. A rapidly convergent series for computing () and its derivatives , 1981 .
[100] Abraham Ziv,et al. Fast evaluation of elementary mathematical functions with correctly rounded last bit , 1991, TOMS.
[101] Xavier Gourdon,et al. Introduction to the Gamma Function , 2002 .
[102] SANDRA FILLEBROWN,et al. Faster Computation of Bernoulli Numbers , 1992, J. Algorithms.
[103] Hirondo Kuki,et al. Complex gamma function with error control , 1972, CACM.
[104] Fredrik Johansson,et al. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval Arithmetic , 2016, IEEE Transactions on Computers.
[105] Cecil Hastings,et al. Approximations for digital computers , 1955 .
[106] Iaroslav V. Blagouchine. Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to π−1 , 2014, 1408.3902.
[107] K. Roberts,et al. Thesis , 2002 .