On Network Performance Evaluation toward the Smart Grid: A Case Study of DNP3 over TCP/IP

The smart grid is the next-generation power system that incorporates power infrastructures with information technologies. In the smart grid, power devices are interconnected to support a variety of intelligent mechanisms, such as relay protection and demand response. To enable such mechanisms, messages must be delivered in a timely manner via network protocols. A cost-efficient and backward-compatible way for smart grid protocol design is to migrate current protocols in supervisory control and data acquisition (SCADA) systems to the smart grid. However, an open question is whether the performance of SCADA protocols can meet the timing requirements of smart grid applications. To address this issue, we establish a micro smart grid, Green Hub, to measure the delay performance of a predominant SCADA protocol, distributed network protocol 3.0 (DNP3) over TCP/IP. Our results show that although DNP3 over TCP/IP is widely considered as a smart grid communication protocol, it cannot be used in applications with delay constraints smaller than 16ms in Green Hub, such as relay protection. In addition, since DNP3 provides reliability mechanisms similar to TCP, we identify that such an overlapped design induces 50%-80% of the processing delay in embedded power devices. Our results indicate that DNP3 over TCP/IP can be further optimized in terms of delay efficiency, and a lightweight communication protocol is essential for time-critical smart grid applications.